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In this, my final lecture as Gresham Professor of Geometry, I wanted to take a look at the thing that makes 
mathematics different from perhaps all other subjects: proof. If we were in Ancient Greece, the latest 
science would tell us that four elements make up all things: fire, water, earth and air. In China at a similar 
time, there are known to be five agents of change in the universe: earth, wood, metal, fire, and water. But 
both cultures also knew that the square on the hypotenuse is the sum of the squares on the other two 
sides. And that’s something we still know. The difference is proof. We have proved Pythagoras’s Theorem 
mathematically, and so it’s true for all time. Today we’re going to explore the mathematical idea of proof, 
and I’m going to show you some of my all-time favourite proofs. We’ll talk as we go about what counts as a 
“good proof”, but the ones I’ll show you today all involve a flash of genius that makes them truly delightful. 
Let’s begin, since I have already mentioned it, with Pythagoras’s Theorem. 

Pythagoras’s theorem 

Possibly the most proved theorem of all time, it has been discovered and rediscovered multiple times 
throughout history. I know you know it, but just to be sure, it states that in a right angled triangle with sides 

𝑎, 𝑏 and 𝑐, where 𝑐 is the hypotenuse, we have that 𝑎2 + 𝑏2 = 𝑐2. That is, “the square on the hypotenuse is 

the sum of the squares on the other two sides”. Special cases, such as the right-angled triangle whose 
sides are 3, 4, and 5, were known thousands of years ago, for example in Ancient Egypt and China. Later, 
we have proofs from the Ancient Greek, Indian and Chinese mathematical traditions, and many hundreds 
since. Here I’ll give you my favourite two proofs. In each case we imagine a right-angled triangle with sides 
𝑎, 𝑏, and hypotenuse 𝑐.  

  

 

 

 

 

 

The first proof is almost purely visual. In the above pictures we see that the same square is made of four 
copies of our triangle, plus, in the first picture a square of side 𝑐, and in the second two squares of sides 𝑎 

and 𝑏 respectively. Therefore 𝑎2 + 𝑏2 = 𝑐2. ◼ 

I like the second proof for the element of surprise: it seems to 
have nothing to do with squares or areas. In our given triangle, 
we drop a perpendicular to the hypotenuse, dividing the triangle 
into two smaller ones which are both similar (in the mathematical 
sense) to the original triangle.  Ratios of corresponding sides in 

similar triangles are equal. Hence  
𝑎

𝑥
=

𝑐

𝑎
 and 

𝑏

𝑦
=

𝑐

𝑏
.  

Rearranging a bit gives us 𝑎2 = 𝑐𝑥 and 𝑏2 = 𝑐𝑦, and so 𝑎2 + 𝑏2 = 𝑐(𝑥 + 𝑦) = 𝑐2. ◼ 
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Before we have a proof, of course, we have to have a “conjecture” – after the first hundred or so right-
angled triangles have this Pythagorean property, we get to be pretty sure that it must always be true. So 
how do we make conjectures? Well, it’s all about pattern spotting. Let’s see how good you are at that. 

Here’s a question about points on a circle. Draw 𝑛 points on the circumference of a circle and join every 
pair of points with a chord. What is the greatest number of regions into which the circle can be divided? 
The answer isn't obvious, so we try some examples. For 1, 2, 3, 4, 5 points respectively, the answer is 1, 2, 
4, 8, 16. Seems pretty obvious that we’re getting the powers of 2 here. But in fact, however you place 6 
points on the circle, you can never create more than 31 regions. (For 7 and 8 the answers are 57 and 99.) 
And this is why we need proofs!  

This wasn’t in the lecture, but there is a formula for the number of regions, which I’ll explain here briefly. To 
follow it you need to know that the number of ways of choosing 𝑘 objects from a set of 𝑛 objects, known as 

“𝑛 choose 𝑘” and written (𝑛
𝑘

), is 
𝑛!

𝑘!(𝑛−𝑘)!
 for 0 ≤ 𝑘 ≤ 𝑛 and 0 otherwise. (By convention 0! = 1.) 

Let 𝑅(𝑛) be the maximum number of regions into which we can divide the circle by joining 𝑛 points. To get 
the maximum number of regions, we must arrange the points in such a way that no three chords all meet at 
a point, because if they didn't meet we could get an additional region, one bordered by the three chords. 
Let’s assume we do that, and then imagine what happens when we draw the chords one at a time. We 
start with one region, the whole circle. Each chord we draw starts at the circumference. As soon as it hits 
another chord, what was previously one region is now divided into two. So every time our chord crosses 
another chord, we add one to our region count. The last thing to happen to the chord is that it reaches the 
circumference again. This also divides an existing region into two regions, so again we have to add one to 
the region count. Therefore, we start with 1 region, and then each new chord we draw adds (to the existing 
region count) the number of existing chords it intersects with, plus 1 (for the final “circumference” region). 
Importantly each intersection of chords arises exactly once in this way – whichever of the two chords is 
drawn second will use up that intersection for its region count. So we have the following formula: 

𝑅(𝑛) = 1 + (no. of chords) + (no. of intersections). 

Since each chord is specified by its endpoints, the number of chords is the number of ways of choosing two 

points from the 𝑛 points we have. So it is (𝑛
2

). The number of chord intersections is slightly harder to work 

out. Two chords that intersect arise from 4 endpoints (one chord from the first pair, one from the second 
pair). But is this condition sufficient? Is it possible for four points to produce more than one pair of 
intersecting chords? Or no intersecting chords? No, because any four points on a circle define six chords, 
making up the sides and diagonal of a quadrilateral, and there is exactly one intersection point among 
these chords. So any four points on a circle really do define exactly one intersection point. Thus, the 

number of intersecting chords is precisely the number of ways of choosing 4 points from 𝑛, which is (𝑛
4

). 

Therefore, 𝑅(𝑛) = 1 + (𝑛
2

) + (𝑛
4

). If you plug in the formulae for (𝑛
2

) and (𝑛
4

), after some work you get 

𝑅(𝑛)  =
1

24
(𝑛4 − 6𝑛3 + 23𝑛2 − 18𝑛 + 24). Not as nice as 2𝑛−1, which we wanted the answer to be, but it 

does have the virtue of being correct! You might wonder why these numbers start off looking like powers of 
2. The reason relates to some properties of binomial coefficients that you might remember from Pascal’s 

triangle. Firstly, (𝑛−1
0

) + (𝑛−1
1

) + ⋯ + (𝑛−1
𝑛−1

) = 2𝑛−1. Secondly, (𝑛
𝑘

) =  (𝑛−1
𝑘−1

) + (𝑛−1
𝑘

). Putting all this together, 

𝑅(𝑛) = 1 + (𝑛
2

) + (𝑛
4

) = (𝑛−1
0

) + (𝑛−1
1

) + (𝑛−1
2

) + (𝑛−1
3

) + (𝑛−1
4

). For 𝑛 ≤ 5 this is 2𝑛−1. But as soon as 𝑛 ≥ 6, 

we are missing (𝑛−1
5

) and subsequent terms, and so that’s where the patterns stop agreeing.  

What are the ingredients of a “good” proof? 

Once there is a valid proof of a theorem, then that is sufficient, in purely mathematical terms. We don’t 
need to prove it again, and doing so doesn’t make it “extra true”. So why do some results have many 
proofs? Pythagoras’s Theorem is a case in point. With hundreds of proofs, it may be the most proved 
theorem of all time. A mixture of things is going on here. Firstly, the theorem was noticed in many different 
cultures. Even in Ancient Egypt, though they probably didn’t know the general result, they do appear to 
have known and used the fact that a 3-4-5 triangle will have a right angle opposite the longest side. Later 
on, in the Greek, Indian and Chinese traditions we see different proofs being found. But even when proofs 
of the result were well known, people kept finding new ones. It’s something of a mathematical hobby at this 
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point in the case of Pythagoras’s Theorem, but sometimes finding a different proof of a result can shed new 
light on it, showing connections that hadn’t previously been noticed, potential generalisations, or using a 
new technique that can be applied more widely. Also, often the first proof of a theorem is not the best – it 
gets the job done but later people find clearer arguments and shorter ways through. The first explorers may 
take a meandering path but of course once you have a map you can easily find shorter, better routes. Over 
the years, proofs can be refined and simplified so that eventually a beautiful, crystalline kernel remains 
where the exquisite genius of the underlying idea is shown to its best effect.  

Here’s an example of turning a bad proof into a good one. Calculate the expression 𝑛2 + 𝑛 + 41 for 
different values of 𝑛. When 𝑛 = 0, 1, 2, 3 respectively, we get 41, 43, 47, 53: all prime. We also get prime 

numbers for 𝑛 = 4, 5, 6, 7, 8, 9, 10, … . Do we always get a prime number? It turns out the answer is no. A 
bad proof of this would be to list all the values until we hit one that isn’t prime. A good way would be to 
notice that if we put 𝑛 = 41, then every term will have a factor of 41, and so the result cannot be prime (it 

will be 41 × 43, whatever that is). However, that observation may only have come from us doing those 

calculations first. Once we have noticed this “41” trick, we can then immediately generalize it and get:  

Theorem No expression 𝑎𝑛2 + 𝑏𝑛 + 𝑐 (with 𝑎, 𝑏, 𝑐 positive integers) gives prime numbers for every 𝑛 ≥ 0. 

Proof Let 𝑓(𝑛) = 𝑎𝑛2 + 𝑏𝑛 + 𝑐. If 𝑐 > 1 then 𝑓(𝑐) = 𝑐(𝑎𝑐 + 𝑏 + 1); both factors are greater than 1 and 𝑓(𝑐) 

is not prime. If 𝑐 = 1 then 𝑓(0) = 1, which is not prime. ◼ 

Mathematicians’ favourite proofs have certain qualities (in addition, of course, to being correct!): they are 
ingenious, they are clear, and they are elegantly concise. They may also give you extra insight into the 
question, or involve a surprising idea. One of the false messages about mathematics is that only geniuses 
can do it, so I want to stress that almost always, our first proofs are workmanlike, roundabout, too long, 
badly expressed, with woefully unhelpful and inconsistent notation, and often wrong. The polishing process 
takes a long time, but don’t be fooled by the presentation of the final perfect gem into thinking it came 
directly from our brains onto the page like that! So let’s sit back and enjoy these lovely proofs, but 
remember that, like any good selfie, it took a lot of work time to make it look that effortless. Here are two 
more proofs that rely on an insight that makes everything simple. 

How many different sums add up to 𝒏? 

For example, there are four ways to make 3:  3 2 + 1  1 + 2  1 + 1 + 1 

You can make 4 in eight ways: 

4;       3 + 1;       1 + 3;       2 + 2;        2 + 1 + 1;         1 + 2 + 1;          1 + 1 + 2;          1 + 1 + 1 + 1 

Is the number of ways doubling each time? If so, why? We could try and make the sums for 4 out of the 

sums for 3. For instance we could add 1 to the first term: 4; 3 + 1; 2 + 2; 2 + 1 + 1. That gives us half the 
answers. We could instead add an extra 1 to get 3 + 1; 2 + 1 + 1; 1 + 2 + 1; 1 + 1 + 1 + 1. But we’ve now 

got 3 + 1 and 2 + 1 + 1 twice and haven’t got 1 + 3 or 1 + 1 + 2. It’s looking horribly complicated. Until a 

fabulous insight saves us. 

There are 𝟐𝒏−𝟏 sums that add to 𝒏 

Proof Start with 𝑛 lots of 1. Between each pair of 1’s put either 𝑔 or +. The 𝑔 means “glue them together”, 

so 1𝑔1 +  1𝑔1𝑔1 means 2 + 3. This will give us all the ways to make 𝑛 with no repetitions or omissions. 

So, the number of possibilities is the number of ways to make 𝑛 − 1 choices of 𝑔 or +. Which is 2𝑛−1. ◼ 

Incidentally, if we don’t care about the order the numbers appear in, then there’s one way to make 1, two 
ways to make 2 (namely 2 and 1 + 1), and three ways to make 3 (namely 3, 2 + 1, and 1 + 1 + 1). By now 

you know it’s risky to imagine there are four ways to make 4. And you’d be right to be suspicious. There are 
five ways: 4;  3 + 1;  2 + 2;  2 + 1 + 1;  1 + 1 + 1 + 1. Aha, so it’s the Fibonacci sequence, you cry? Well, the 

possibilities for 5 are 5;  4 + 1;  3 + 2;  3 + 1 + 1;  2 + 2 + 1;  2 + 1 + 1 + 1;  1 + 1 + 1 + 1 + 1. So it’s not the 

Fibonacci sequence either. The first few terms are 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101. This is 
called the partition function. We can work each term out recursively from earlier terms in the sequence, but 
there’s no known closed form expression for it (that is, something just in terms of 𝑛, like 2𝑛). 

The following argument uses a very powerful tool called the Pigeonhole Principle: if we have 𝑚 boxes and 

𝑛 > 𝑚 things to put in the boxes, then at least one box will contain more than one thing.  

What follows is just an illustrative example – in that it doesn’t prove anything particularly profound – but 
there are some deep theorems in mathematics that deploy the pigeonhole principle as part of their proofs. 
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There is a multiple of 42 which consists just of 0’s and 1’s.  

Proof  (This proof works, suitably modified, for any 𝑛, not just 42.) Write a list of numbers: 1, 11, 111, 

1111, 11111, … Each of these numbers on division by 42 gives a remainder. Possible remainders: 0, 1, 2, 
3, …, 41. There are 42 possible remainders. If we continue our list of numbers 1, 11, … until we have a 
string of 43 1’s, we will have: 43 numbers and 42 possible remainders. By the Pigeonhole Principle, there 
must be two of these numbers with the same remainder. If we subtract the smaller from the larger, we’ll get 
a multiple of 42. Therefore 42 divides some number of the form 1111…10…0. ◼ 

A picture speaks a thousand words 

Sometimes, the right picture is all you need to make a great proof. Here are some examples. 

Viviani’s Theorem Whatever point you choose inside an equilateral triangle, the sum of the distances from 
that point to the three sides is equal to the height of the triangle.  

Proof  Suppose the triangle has height ℎ and base 𝑏. The area of the triangle is 
1

2
𝑏ℎ. 

Since it’s equilateral, the other sides also have length 𝑏.  

Suppose the distances to the sides from our chosen points are 𝑥, 𝑦, 𝑧. We can split 

the triangle into three smaller triangles with heights 𝑥, 𝑦, 𝑧 and base 𝑏. Therefore, 
1

2
𝑏ℎ =

1

2
𝑏(𝑥 + 𝑦 + 𝑧). Hence ℎ = 𝑥 + 𝑦 + 𝑧. ◼ 

 

The sum of the first 𝒏 odd numbers is 𝒏𝟐 

(We may not have time for this in the lecture, so think of this bonus content if you bothered 
to read this transcript!) The first few sums are 1, then 1 + 3 = 4, then 1 + 3 + 5 = 9, and 

then 1 + 3 + 5 + 7 = 16, and so on. We appear to be getting square numbers. A diagram 

makes this obvious. We can be a bit more rigorous if we like: to get from 𝑛2 to (𝑛 + 1)2 we 

wrap 2𝑛 + 1 unit squares around the square of side 𝑛, and we could do it algebraically: 
(𝑛 + 1)2 = 𝑛2 + 2𝑛 + 1. But the picture really helps us to see this relationship.   

The 𝒏th triangular number is 
𝟏

𝟐
𝒏(𝒏 + 𝟏). 

The 𝑛th triangular number T𝑛 is the number of dots we need to make a triangle with base 𝑛, 

that is, 1 + 2 + ⋯ + 𝑛.  

Again, a visual argument helps. The rectangle shown contains two copies of 𝑇𝑛. Its area is 

𝑛(𝑛 + 1). And so 𝑇𝑛 = 1 + 2 + ⋯ + 𝑛 =
1

2
𝑛(𝑛 + 1). ◼ 

 

The sum of the first 𝒏 square numbers is 
𝟏

𝟔
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏) 

Let’s write 𝑆𝑛 = 1 + 4 + 9 + ⋯ + 𝑛2. Imagine a triangle of numbers, but we put 1’s in the first row, 2’s in the 
second row, and so on down to 𝑛. That means the sum of the numbers in the triangle is 𝑆𝑛. Make three 

copies of this triangle, each one starting the counting from a different vertex. Then the sum of the numbers 
in all three triangles put together is 3𝑆𝑛. 

     1      

    2  2     

   3  3  3    

  4  4  4  4   

 ⋰  ⋰    ⋱  ⋱  

𝑛  𝑛  𝑛  𝑛  𝑛  𝑛 
 

     𝑛      

    ⋰  𝑛     

   4  ⋰  𝑛    

  3  4    𝑛   

 2  3  4  ⋯  𝑛  

1  2  3  4  ⋯  𝑛 
 

     𝑛      

    𝑛  ⋱     

   𝑛  ⋱  4    

  𝑛    4  3   

 𝑛  ⋯  4  3  2  

𝑛  ⋯  4  3  2  1 
 

But if we superimpose the three separate triangles, we have a triangle with 2𝑛 + 1 at each entry (the 𝑗th 

entry of the 𝑖th row is 𝑖 + (𝑛 − 𝑖 + 𝑗) + (𝑛 + 1 − 𝑗). The 𝑛th triangle number is 
1

2
𝑛(𝑛 + 1), meaning there are 

1

2
𝑛(𝑛 + 1) entries. Adding all these entries gives us 3𝑆𝑛 =

1

2
𝑛(𝑛 + 1)(2𝑛 + 1), and the result follows. ◼ 

     

     

     

     

     

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ 

⚫ ⚫ ⋱   ⋮ ⋮ 

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ 

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ 

⋮ ⋮  ⋮ ⋱ ⚫ ⚫ 

⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ 

𝑥 

𝑧 

𝑦 



 

5 
 

Proof by contradiction 

The following proof dates back to Euclid and would probably come in most mathematician’s list of the top 
ten proofs of all time.  

There are infinitely many prime numbers 

Proof Suppose that there are only finitely many primes. Then we can make a list of them: 2, 3, 5, up to the 
biggest prime 𝑝, say. Let 𝑛 = (2 × 3 × 5 × ⋯ × 𝑝) + 1. Now 𝑛 is one more than a multiple of 2, so clearly 2 
does not divide 𝑛. Similarly 3 doesn’t divide 𝑛, nor does 5, and nor do any of the prime numbers on our list. 

But that implies 𝑛 is either prime or has a prime factor not on our allegedly complete list of primes. So that 

list cannot have been complete – there can’t be only finitely many prime numbers. ◼ 

What a wonderful idea – a thought experiment that imagines the consequences of assuming the opposite 
of what you actually want to prove! This is a technique called “proof by contradiction” (or reductio ad 
absurdum, if you prefer). It’s a kind of Sherlock Holmesian approach: once you have eliminated the 
impossible, whatever remains, however improbable, must be the truth. The great mathematician G. H. 
Hardy called this technique “one of a mathematician’s finest weapons. It is a far finer gambit than any 
chess gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers 
the game”. The final proof I’ll show you involves one of the most important early realisations that Ancient 
Greek mathematicians had, namely that there are numbers that cannot be written as a ratio, or fraction, of 
whole numbers. Such numbers are called irrational. The square root of 2 is an example. But how do you 
prove something can never be done – isn’t there always the chance that you’ve just not found a solution 
yet? The answer is this ingenious proof by contradiction.  

√𝟐 is irrational 

Proof Suppose √2 is rational. Then we can write √2 =
𝑎

𝑏
, where 𝑎, 𝑏 are whole numbers, and by cancelling 

any common factors we can assume they are coprime. Now square both sides: 
𝑎2

𝑏2 = 2. This implies that 

𝑎2 = 2𝑏2. If 𝑎 were an odd number, then 𝑎2 would be odd, because the product of two odd numbers is odd. 

So 𝑎 must be even, and we can write 𝑎 = 2𝑐 for some integer 𝑐. Now 𝑎 = 2𝑐, so 2𝑏2 = (2𝑐)2 = 4𝑐2. 

Cancelling the 2 we get 𝑏2 = 2𝑐2. As before, this forces 𝑏 to be even. But we said that 𝑎 and 𝑏 were 

coprime – and now we’ve shown they are both even, which is a contradiction. Thus, there is no expression 

for √2 as a fraction, and it is therefore irrational. ◼ 

Changing the assumptions 

You can’t prove something from nothing. Every proof requires assumptions: these include the hypothesis of 
the statement, for instance in Pythagoras’s Theorem that we have a right-angled triangle, and some agreed 
understanding of the definitions of the words used (like what a prime number is), but also we often rely on 
other results, like facts about similar triangles as in the case of the second proof I gave of Pythagoras’s 
Theorem, and, if we go far enough back, we reach the basic assumptions, or axioms. Here’s an example.   

The angles in a triangle add up to 𝟏𝟖𝟎∘ 

Proof Take the triangle 𝐴𝐵𝐶. Draw a line through 𝐴 parallel to 𝐵𝐶.  

Now, because alternating angles are equal, the angles marked 𝑥 
are equal and the angles marked 𝑦 are equal. Angles on a straight 

line add up to 180∘, and thus 𝑥 + 𝑦 + 𝑧 = 180∘, as required. ◼ 

It’s so simple, but it does use some other facts which are either 
axioms that Euclid assumes as self-evident, or facts that Euclid 
has proved earlier, like that the angles on a straight line add up to 
180∘, or that alternating angles are equal, as well as “common 

notions”, for example that things that are equal to the same thing 
are equal to each other. In particular, this proof relies on the so-
called fifth postulate, the parallel postulate of Euclid, which says 
that given any line 𝐿 and any point 𝐴 not on 𝐿, there is a line 

through 𝐴 parallel to 𝐿. What we have really proved is that, subject to the axioms of Euclidean geometry, 

the angles in a triangle add up to 180∘. If we remove the parallel postulate from our geometry, the proof 
isn’t valid and it opens up the possibility that in some geometries, the angles in a triangle don’t add up to 

𝑥 

𝑥 

𝑦 

𝑦 

𝑧 



 

6 
 

180∘. And indeed that’s exactly what happens in the geometry on the surface of a sphere. Here, we use the 
idea that a “straight line” is really just a shortest path between points to define “lines” on a sphere as 
geodesics – shortest paths. It turns out that these are arcs of great circles (like the equator). Long-haul 
flights follow these paths because they use the least fuel. It feels like understanding this geometry must be 
horribly complicated, but actually there’s a beautiful relationship between the angles in a spherical triangle 
and the area of that triangle that is wonderfully simple to prove. It was first shown to me by the then 
Gresham Professor of Geometry, Christopher Zeeman, when I was still at school, and it impressed me 
profoundly! 

Angles in a spherical triangle add up to more than 𝟏𝟖𝟎∘   

On a sphere, if we take two great circles, they create a shape called a lune1 – well, 
two identical lunes in fact, one antipodal to the other. The area of a lune with angle 𝑥 

is just 
𝑥

360
ths of the total surface area 𝑆 of the sphere. For a spherical triangle with 

angles 𝑥, 𝑦, and 𝑧, we can see that each pair of sides creates a pair of identical 
lunes. The six lunes cover the whole area of the sphere, but there is some overlap. 
The triangle appears in three of the lunes, and an antipodal copy of it appears in the 
other three, as shown in the two diagrams below2. 

 

The total surface area of the sphere equals the six lunes, minus 
four copies of the triangle. Say the triangle has area Δ. Then 

𝑆 =  2 (
𝑥

360
+

𝑦

360
+

𝑧

360
) 𝑆 − 4Δ, and so 𝑥 + 𝑦 + 𝑧 = 180 (1 +

4Δ

S
). 

This means that every spherical triangle has angle sum greater 
than 180∘. Moreover, the amount by which the sum exceeds 

180∘ is proportional to the area of the triangle! If, for instance, 

the triangle’s area is one eighth the surface area of the sphere, 
we get that the angle sum is 270∘, which explains the three right angles of a triangle 

with one vertex at the North Pole and the others on the equator at longitudes 0 and 90. This makes a lot of 
sense when you think that the smaller a triangle is as a proportion of the surface of the sphere, the closer it 
gets to being flat, and the closer its angle sum gets to 180∘. In the limit, we’d end up with a triangle on the 

plane (or a sphere of infinite radius, if you prefer) and the angle sum would revert to the Euclidean 180∘.   

The future: can computers do proofs? 

In an hour I can only show you short proofs. There are many other beautiful proofs that also involve 
wonderfully clear and ingenious arguments, but to experience them as “clear” you need several years of 
university level maths, and a “short” proof may be one that’s a mere five pages instead of twenty. Some of 
the most famous theorems have proofs that run to hundreds of pages. There’s a theorem in algebra called 
the Classification of Finite Simple Groups that takes up several books. Even this is a distillation of 
hundreds of earlier research articles. Meanwhile, proofs involving computer calculations, such as, 
famously, the Four Colour Theorem, are done on a machine precisely because they would take a human 
far too long. How do we know that these calculations are correct? Are these proofs valid? For me, yes. And 
the reason is that, as long as we check the program, the chance of a stray neutrino changing a 0 into a 1 
and giving a false output feels to me lower than the chance that there’s an error in one of the hundreds of 
pages of the proof of the Classification of Finite Simple Groups, or of Fermat’s Last Theorem. Humans are 
considerably more fallible than machines, as long as we have definitely asked the machine to do what we 
actually want it to. I think I will always prefer proofs that I can grasp every line of for myself. But sometimes 
such proofs are elusive. Any proof is better than none! As well as computer-assisted proofs, where the 
machine carries out some of the calculations as directed by the human mathematician, another interesting 
development is proof-checking by machine. But can computers discover and prove entirely new theorems, 
unaided by humans? Sort of. There’s no immediate danger of human mathematicians becoming obsolete. 
But it will be very interesting to see how such technology develops in the future.   

 

1 The lune diagram is from https://commons.wikimedia.org/wiki/File:Regular_digon_in_spherical_geometry-2.svg by 
Pbroks13, Public domain, via Wikimedia Commons. 
2 I’ve based these on a black and white diagram of a spherical triangle by Peter Mercator, usage under CC BY-SA 3.0 
https://commons.wikimedia.org/wiki/File:Spherical_trigonometry_Intersecting_circles.svg, (Wikimedia commons) 

https://commons.wikimedia.org/wiki/File:Regular_digon_in_spherical_geometry-2.svg
https://commons.wikimedia.org/wiki/File:Spherical_trigonometry_Intersecting_circles.svg
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Conclusion 

The concept of proof is one of the defining characteristics of mathematics. Science, though it uses 
mathematics, is not itself mathematics. It’s perhaps not fair to claim that the Ancient Greeks’ theories about 
the four elements count as science. But even when what we call the scientific method got going, by which I 
mean conducting experiments rather than reasoning things out philosophically, we are still dealing with 
hypotheses continually refined by experiment. I'm not saying that Newton's laws are worthless, “𝐹 =  𝑚𝑎” 
fits exceedingly well with experiment, but I also know that they cease to work so well at very high speeds, 
close to the speed of light. For that you need Einstein's special relativity. And there will no doubt be further 
refinements as time passes. In mathematics we don't have this problem of supersession because nothing 
is accepted into the canon until a valid proof has been found. In science there is no absolute proof – we 
could argue that science consists of things that have the potential to be disproved by experiment (science 
could never prove or disprove the existence of God, for example). Meanwhile, in a court of law, we only 
have to prove things “beyond reasonable doubt”. In mathematics, by contrast, the burden of proof is much 
higher. In mathematics we prove things beyond unreasonable doubt. 

I hope you’ve enjoyed this, and indeed all of my Gresham lectures. It’s been a great honour to be the first 
woman to serve in this role. You can watch all my lectures online via the Gresham College website. 

© Professor Sarah Hart, 2024 
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References and Further Reading 

• You can watch this and all my other Gresham lectures online for free. The full list is at 
https://www.gresham.ac.uk/speakers/professor-sarah-hart  

• If you want to explore just how many sequences begin 1, 2, 4, 8, 16… but are not the powers of 2, 
have a look at the fabulous Online Encyclopedia of Integer Sequences. You can enter any 
sequence of digits into the search bar and you’ll get information about all the known interesting 
sequences containing that sequence of terms. https://oeis.org/  

• There’s an excellent YouTube channel dedicated entirely to visual proofs, and it has lots of really 
good animations and diagrams. https://www.youtube.com/@MathVisualProofs. One of my 
favourites, which I didn’t have time to show today but is well worth a look, is the proof that it’s 
possible, with a straightedge and compass construction, to divide a circle into seven (or indeed 𝑛 

for any positive integer 𝑛), pieces of equal area https://www.youtube.com/watch?v=KhfZK5IIK9E. 

• The mathematician Paul Erdős used to say that God had a book of the best proofs of every 
theorem, and any exceptionally lovely proof would be referred to as a “proof from The Book”. In 
tribute to that idea, Martin Aigner and Günter M. Ziegler assembled a collection of wonderful proofs 
of different theorems, including six proofs that there are infinitely many prime numbers. Most of 
them require university level mathematics, but if you have that, it’s well worth a read. As Erdős said, 
“You don't have to believe in God, but you should believe in The Book”.  
Martin Aigner and Günter M. Ziegler. Proofs from The Book, Springer, 2009. ISBN 9783642008559. 

 

© Professor Sarah Hart, 2024 
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