
 

 

 

 

Mathematical Puzzles and Paradoxes 
Professor Sarah Hart 

30th January 2024 

In this lecture we’ll going to look at riddles, puzzles and paradoxes, and how they can lead to some 
fascinating mathematical ideas and discoveries.  

We humans are inherently playful and curious. In earlier Gresham geometry lectures, we’ve discussed 
things like boardgames, card games, and games of chance like dice. Games date back at least as far as 
archaeology can take us, and probably beyond. But there’s another way we like to entertain our minds that 
also goes back many thousands of years, and that’s what we are going to talk about today: puzzles and 
riddles. And specifically, written or spoken ones – I don’t mean puzzles like Sudoku or Rubik’s cubes. One 
of the lovely things about word problems like this is that you can see them spreading and evolving over 
time, rather like folk tales or fairy tales. You find variations of them in different countries, featuring different 
animals or people. Using plenty of examples, we’ll show how puzzles can tell us interesting things about 
both the history of mathematics and mathematics itself.   

The seventeen camels (and other stories) 

Here’s one example: the seventeen camels.  

The Sheikh died and left his herd of camels to be divided between his three sons. The eldest son should 
get half the camels, the next son a third of them, and the youngest one ninth. The problem was that the 
herd had 17 camels, so they got stuck with the division straight away. A passing traveller offered to help. “I 
shall lend you my camel”, he said. The herd now had 18 camels. So, the eldest son got half, which is 9, the 
next son got one third of 18, which is 6, and the youngest got one ninth, which is 2. That left just one 
camel, which the traveller jumped back on and rode away. What is going on? 

The recreational mathematics expert David Singmaster researched the puzzle and found that problems 
involving these fractions, but without the entertaining camel story, date back at least 600 years, but 
problems with the same basic plot twist (which we’ll discuss in a moment) are even older than that – at 
least 3,500 years. The animals come on the scene later. By the 19th century we see this puzzle in English 
language books, but given an exotic flavour by being set in some unspecified Arab country with camels, or 
in China with elephants, in several putative locations with horses, cows or even, in one much more recent 
instance, Rolls Royces!    

Back to the camels: how do we resolve the confusing fact that an allocation that couldn’t be done with 17 
camels can be done with 18, but the 18th camel isn’t actually used? It’s fairly simple if we look at it the right 

way. If you actually work out 
1

2
+

1

3
+

1

9
, the answer is 

17

18
. So, the fractions don’t in fact add up to 1. This 

means that the will only disposes of 
17

18
ths of the camels, so it’s not possible to distribute the whole herd to 

the sons while meeting the exact terms of the will. What the solution does is to give each son a little more 
than that to which he is entitled: the first son should really receive 8.5 camels but gets 9, and so on. The 
underlying challenge here is what do to if you have to divide a quantity into a number of fractions that do 
not add up to 1. Problems relating to this, as David Singmaster found, date back at least as far as the 
Rhind Papyrus (circa 1650 BCE).  

Following the evolution of a puzzle or type of puzzle over time (in this case a lineage of thousands of years) 



 

2 
 

can give us fascinating glimpses of knowledge transfer between particular cultures at particular times, and 
as well as clues to the way that knowledge in general is transmitted, it hints in particular at how and when 
mathematical knowledge has spread from one place to another. If somewhere a puzzle appears that 
requires, in its solution, techniques to deal with, say, quadratic expressions, then that is good evidence that 
this knowledge itself is now available in that location. As an example of an ancient puzzle requiring just 
this, there’s a Babylonian tablet which asks the reader to find the length and width of a rectangle, given just 
the difference between them, and the area of the rectangle. With modern algebra we’d solve this quite 
quickly by writing down two equations, eliminating one variable, and ending up with a quadratic to solve. 
Although they did not have anything like the “quadratic formula”, the Babylonians did have an algorithm to 
solve problems like this one, which involves a specific type of quadratic expression.  

One interesting phenomenon that can sometimes occur as problems spread is that the person 
appropriating them changes the wording without necessarily understanding the consequences. This can 
lead to problems that don’t have a solution, or incorrect solutions being given, or wrong explanations of 
why the solution is right. As an example, there is a whole class of problems of the following type (my 
version with “Monday” and “metres” is of course in modern language):  

A snail is at the bottom of a well 2 metres deep. Starting on Monday it climbs half a metre each day but 
slips back 1/5th of a metre each night. What day will it get out of the well? 

The first time you try a problem like this you probably say that the net climb each 24 hour period is 
1

2
−

1

5
=

3

10
m, or 30cm. So it starts Tuesday morning 0.3m, then 0.6, 0.9, 1.2, 1.5, and on Sunday morning it will 

start at 1.8m, so it will get out sometime on Sunday. But this isn’t right. It starts Saturday at 1.5m, and so at 
sunset on Saturday it will reach 2m and escape just before nightfall. So, the answer is Saturday. I vividly 
remember getting a problem like this wrong myself as a child!  

These kinds of puzzles seem to have originated in India at least 1500 years ago, when it was common to 

write complicated fractions like 
3

10
 in terms of simpler unit fractions. It’s been suggested that to begin with 

such puzzles simply said that the snail climbs “
1

2
−

1

5
” each day, meaning 

3

10
 each day. In that case, the 

subtlety about what happens at the end of this process is not required, and the correct answer really would 
be Sunday. But the puzzle migrated to what was then Persia, and eventually to Italy (why? Because of 
transmission of knowledge along trade routes), and in the process morphed into problems where the snail 
(or other animal – there are examples with snakes, dragons, even lions) first moves forward then goes 
back, at which point the different solution comes into play. But, interestingly, it seems to have taken at least 
a century for anyone to notice, so for a long while these later versions of the puzzle were given with the 
wrong solution. It finally seems to have been resolved in 14th century Italy.  

Tracing the development and spread of knowledge is one fascinating aspect of investigating mathematical 
puzzles. In the next example we’re going to look at another benefit – mathematical ideas involved in the 
solutions can lead to deep and important mathematics. 

Saving the day, the decanting way 

Water jugs problems date back a long way and appear in many different guises. Here is an example: 

You have a five litre jug and a three litre jug, with no other markings on them. But you need to measure out 
exactly one litre of water. What can you do? 

Puzzles in this spirit date back many centuries – another type is having (say) an 8L, 5L and 3L jug with the 
8L jug full, and needing to split the 8L exactly into half. There are variants of both types with different 
numbers of jugs, different quantities, and different subdivisions required. We’ll just focus on the problem of 
two jugs, with volumes 𝑋 and 𝑌, and you have to make 1 litre of water. I’ll call these (𝑋, 𝑌)-jug problems.  

Beginning with the (5,3)-jug problem, the crucial thing to notice is that if we could find some combination of 
fives and threes that makes 1, we’d be happy. For instance, 2 × 3 − 1 × 5 = 1. This gives us a solution: we 
repeatedly fill the 3L jug and repeatedly pour the contents into the 5L jug (emptying that jug whenever it is 
completely filled), then after two fillings of the 3L jug and one emptying of the 5L jug, we’ll have 1L of water 
left in the 3L jug.  

Similarly, let’s say we have a 7L and a 5L jug. This time, 3 × 5 −  2 × 7 = 1. So we can repeatedly fill the 5L 
jug, pour the contents into the 7L jug, emptying as required, and after three fillings of the 5L jug and two 
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emptyings of the 7L jug, we’ll have our 1L of water. 

Finding a solution to any such jug problem is in fact equivalent to finding an expression 𝑎𝑈 −  𝑏𝑉 =  1, 

where 𝑈 and 𝑉 are the volumes, in some order, and 𝑎 and 𝑏 are integers. One thing this tells us is that if 
the volumes have any common divisor bigger than 1, we are in trouble, because if that were so then the 
left-hand side would be divisible by that factor, but the right-hand side would not. So, we only have a 
chance if our two volumes, like 3 and 5 or 5 and 7, are coprime, in other words their greatest common 
divisor, or gcd, is 1. There’s a very cool technique called the Euclidean algorithm for finding the gcd of two 
numbers, to check this, but it also provides us with a way to solve any water jugs problem of this kind! I’ll 
show you an example. 

Let’s suppose our two jugs are 35 and 11 litres and we want to find their gcd. (These numbers are small 
enough that we can instantly tell their gcd is 1, but for larger numbers it’s much less obvious.) The process 
is simple. First, divide 35 by 11; we get 3 remainder 2. That is, 

35 = 3 × 11 + 2. 

Anything that divides both 11 and 2 must divide 35, so is a common divisor of 11 and 35. But also, because 
2 = 35 − 3 × 11, anything that divides both 11 and 35 must also divide 2, so is a common divisor of 11 and 
2. So gcd(35,11) = gcd(11,2). Now we go again with 11 and 2. 

11 = 5 × 2 + 1. 

By the same reasoning, gcd(11,2) = gcd(2,1), but that’s just 1. So gcd(35,11) = 1, as we thought. However, 
we can now do some magic with these two equations. Rewriting the second one we have 

1 = 11 − 5 × 2. And from the first one, 2 = 35 − 3 × 11. So we can substitute: 

1 = 11 − 5 × (35 − 3 × 11) = 16 × 11 − 5 × 35. This means we can solve the (35,11)-jug problem by filling 
the 11L jug sixteen times and pouring it into, and emptying, the 35L jug five times. The Euclidean algorithm 
gives us a way to solve every valid (𝑋, 𝑌)-jug problem (by valid, I mean that a solution exists, which occurs, 

as we’ve said, exactly when gcd(𝑋, 𝑌)  =  1). Bruce Willis solved the (5,3)-jug problem in the action film Die 
Hard 3, to stop a bomb set by a malevolent terrorist. He clearly knows the Euclidean algorithm! 

The Euclidean algorithm is not just useful for defusing fictional bombs. It has an important role in 
cryptography. I don’t have time to go into all the details but it’s a vital component of the RSA encryption 
algorithm that is the basis of much online encryption. Essentially, to decrypt you need to use the Euclidean 
algorithm on two numbers, call them 𝐾 and 𝑋, to find 𝑎 and 𝑏 such that 𝑎𝐾 + 𝑏𝑋 =  1. That number 𝑎 is the 
thing that allows you to decrypt the message. The number 𝐾 is the “public key”, it’s publicly available. But 

the number 𝑋 is secret. Without it you can’t find the decryption key 𝑎, except by brute force attack. If you 
use large enough numbers RSA is therefore essentially impossible to crack.  

Crossing bridges to the real world 

The water jugs problem relates to some nice mathematics, but that mathematics wasn’t devised specifically 
to solve the problem. So why bother with the puzzle? Is this “recreational mathematics” worthwhile? Of 
course, for a mathematician, the phrase “recreational mathematics” is a tautology. Play is worthwhile in and 
of itself. Interesting puzzles are also a great invitation to the wonders of mathematics. (The following 
tongue-in-cheek caution appeared on the cover of one book by renowned popular mathematics writer and 
hero of recreational mathematics. WARNING: Martin Gardner has turned hundreds of innocent youngsters 
into math professors and hundreds of math professors into innocent youngsters.) But there can be 
unexpected consequences in terms of new mathematics that has useful real-world applications. The most 
famous example of this is the Bridges of Königsberg problem. The town of Königsberg had seven bridges, 
and the puzzle was whether it is possible to go for a walk around the town that crosses each bridge exactly 
once. The great mathematician Leonhard Euler proved that it was impossible. In doing so he created a 
whole new field of mathematics – graph theory – that studies the properties of networks of vertices and 
edges (or lines and nodes). The mathematical properties of networks have applications in everything from 
transport connections to the internet. One example from the world of word problems of puzzles whose 
solutions involve highly applicable mathematics comes from “buying birds” problems – first seen in 5th 
century China, but here’s an example from Fibonacci’s early 13th century book Liber Abaci: “The three 
kinds of birds”. You are told that thirty birds are bought for a total of thirty pence (or denarii, in the original). 
There are three kinds of bird: partridges, pigeons, and sparrows. Partridge cost 3 pence, pigeons 2, and 
sparrows are two for a penny. What are the possibilities for how many birds of each kind are bought? (For 
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a fuller discussion of this problem, as well as how Fibonacci solved it, see my Gresham lecture The maths 
of coins and currencies.) The study of problems like this has developed into a subject known as linear 
programming, or linear optimization, which today has applications in everything from transport to 
manufacturing. For manufacturing, you might want to optimise your profits by knowing what quantities of 
each different variety of product to make, with each variety costing a different amount of time and/or money 
to produce, and being sold for a different amount. In transport, it might be working out the best way to 
deploy your transport fleet (single decker buses, double decker buses, etc) to get a given number of people 
to a given number of destinations in the most efficient way.  

Helping Achilles beat the tortoise 

A particularly fun class of puzzles are those which present a seemingly impossible situation – a paradox 
which we are challenged to resolve. In the “seventeen camels” puzzle, the apparent paradox can be 
resolved when we realise that the fractions do not add to 1: it’s an object lesson in the value of clear 
thinking. But sometimes a paradox requires much more than this, and addressing it forces us to think 
deeply about words and concepts, and sometimes even to develop new mathematics. That’s what we’ll 
think about for the rest of this talk.  

Zeno’s paradoxes are probably the most famous ancient paradoxes, and it wasn’t possible to resolve many 
of them fully until mathematics developed entirely new techniques many centuries later. Achilles and the 
Tortoise is the paradox that if Achilles is, say, 100 metres away from a tortoise that’s moving very slowly, 
then even though Achilles runs very fast, he can never catch up to the tortoise because by the time he 
covers those 100 metres, the tortoise will have moved a little way further, and by the time he makes up that 
small distance the tortoise will have moved on again, so he can never catch it. A related paradox says that 
though Atalanta is a very fast runner, she can in fact never get anywhere at all, because to get from A to B 
she has to first cover half the distance, and then half the remaining distance, and so on, so she has an 
infinite number of distances to travel, which is impossible. Both of these paradoxes boil down to summing 
an infinite series, which is notoriously problematic (how do we know what the outcome of adding infinitely 
many numbers together will be – our intuition is rather poor in such situations), but the underlying issue is 
that we are trying to describe a continuous process – motion – in terms of discrete events. Even more stark 
is the paradox of the arrow. An arrow flying through the air, if we do a freeze frame, is at rest. So, its 
movement is made up of infinitely many instants of time in which the distance it moves is zero. How does it 
get anywhere? Calculus, which was developed by Isaac Newton and Gottfried Leibniz (let’s not get into 
who thought of it first!) is the tool we need to understand continuous processes in a mathematically 
rigorous way.  

Beard-scratching logic 

Paradoxes of logic also have a venerable history. The philosopher Epimenides of Knossos famously said 
“All Cretans are liars”. The problem is that since Knossos is in Crete, that makes Epimenides a Cretan 
himself. If the statement is true, then Epimenides is himself a liar, so the statement, because he made it, is 
a lie. There isn’t a logical contradiction, though, if the statement is false. That would mean not all Cretans 
are liars, but Epimenides could still be one of the dishonest ones. (See also the exam papers that say “this 
page is left intentionally blank”.) However, what are we to make of a sentence that asserts “this sentence is 
false”? If it’s true then it’s false, and vice versa. Which is it? We could say it’s both true and false. I don’t 
like that view, because these seem like contradictory claims: we usually consider it a basic tenet of logic 
that something can’t be both true and false at the same time. Another approach is to say that it’s neither 
true nor false (because either assumption leads to a contradiction). I quite like the following argument 
which has been attributed to the logician Arthur Prior: every sentence implicitly asserts its own truth. “The 
sky is blue” is a claim that the sky is indeed blue. So it’s logically equivalent to “The sky is blue and this 
sentence is true”. With this in mind, “this sentence is false” is equivalent to “this sentence is false AND it is 
true”, which is impossible. Therefore, the sentence is false. Whatever interpretation we prefer here, thinking 
about it is very useful to get some clarity around the ground rules of logic.  

Since I love mathematical references in literature, I can’t resist sharing one more paradox, which was put to 
Don Quixote’s faithful servant Sancho Panza in Cervantes’ novel. You are the magistrate in a town with a 
curious rule. All travellers crossing the bridge to the town must state what they will do there. If they tell the 
truth, then they are free to go. If they lie, then they will be hanged. One day a traveller, when questioned, 
says “I will be hanged”. What should you do? If you hang him, then you make his statement true, which 
means he should have been allowed to go free. But if you don’t hang him, then that means he lied, for 
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which he should be hanged! It seems like every choice is wrong. If you want to know Sancho Panza’s most 
excellent verdict, you’ll have to read the book!  

Now try this one, which I believe is due to Martin Gardner: “This sentence has seven words”. Clearly false. 
If a statement is false, then its negation is true. Unfortunately, “This sentence does not have seven words”, 
is also false. Help! The problem here, and with “this sentence is false”-type statements – broadly known as 
“liar paradoxes” – is that they are self-referential. The way out of “this sentence has seven words” is to 
notice that although it is self-referential, it doesn’t necessarily follow that its negation is. We need to move 
up a layer and distinguish the statements from the statements about the statements – the language from 
the metalanguage, if you will. If Sentence A is “This sentence has seven words”, then the actual negation, 
which I’ll label Sentence B, is: “Sentence A does not have seven words”. This time, Sentence A is false and 
Sentence B is true. So all is well.    

But sometimes the problem goes deeper than getting our heads clear about semantics. Genuinely self-
referential statements can cause serious challenges, and even threaten the foundations of mathematics. 
The so-called barber paradox is a case in point.  

In a certain town, fashion dictates that all the men be clean-shaven. The town has a single barber. He 
shaves only those men who don’t shave themselves. 

Fair enough. Except: who shaves the barber? Suppose he shaves himself. But the barber only shaves men 
who don’t shave themselves. So he cannot shave himself. On the other hand, if he doesn’t shave himself, 
then he’s one of the people who the barber does shave. So he does shave himself.  

One can resolve this quite easily by saying that clearly such a town cannot exist. But the paradox was 
designed to draw attention to a genuine mathematical problem. 

Shaking the foundations 

In the late 19th and early 20th century, huge efforts were being made to put the whole of mathematics on a 
rock-solid logical foundation, breaking down the subject into its most fundamental building blocks, axioms 
and rules of logical inference, so that in theory starting just from those axioms, and applying step-by-step 
reasoning, without having to force the reader to take on trust any intuitive leaps, one could build up an 
impregnable fortress of pure logic (or something like that!) that covers everything. A basic principle of any 
proposed system would be things you can prove in that system must be true, that nothing can be both true 
and false at the same time, and that therefore it must be impossible to prove a false statement (known as a 
contradiction). A short way of saying this is that the system must be consistent – you can prove at most 
one of a statement and its negation.  

For instance, think about sets. You can have sets and combine them to make new ones, by taking things 
like the intersection, union, complement (everything not in the set), and so on. You can define sets by 
looking at subsets with particular properties. So we might look at the set of all rectangles, and then the 
subset whose length and width are equal (which gives the squares). Or we might look at the set of all prime 
numbers, and define a slightly self-referential subset, those primes 𝑝 for which 2𝑝 + 1 is also prime. We 
end up with the Sophie Germain primes. You can think about sets of anything, even sets of sets. One thing 
we find useful to study, for instance, is the set of all subsets of a given set – this is called the power set. If 
we are studying the properties of sets in general, how we can manipulate them and define them and so on, 
this is called set theory. Mathematicians were trying to codify all this at the end of the 19th and start of the 
20th century, setting up rules of engagement, like if A and B are sets, then the union of A and B is a set, 
and the set of all subsets of A is a set, and the set of all elements of A that satisfy a particular criterion is a 
set, and so on. One of these mathematicians, Gottlob Frege, had in 1903 just completed Volume 2 of an 
epic work called Foundations of Arithmetic, aiming to build up laws of numbers and sets, when Bertrand 
Russell wrote to him pointing out that in his system, something like the barber paradox could occur.  

If you can have any set, and you allow sets of sets, you can define the set of all sets – this set would 
contain itself as an element, which is not necessarily an issue, though it’s a bit of a strange Russian doll 
concept. However, consider the set S of all sets that do not contain themselves. If S contains itself, then by 
definition S does not contain itself. But if S does not contain itself, then it qualifies as a member of S. So S 
is neither in S or outside S, which is impossible. This set S cannot exist. But within Frege’s set-up, it (or 
something tantamount to it), could be defined. So the whole system is inconsistent and cannot work. Poor 
Frege added an appendix to his book, saying “Hardly anything more unfortunate can befall a scientific 
writer than to have one of the foundations of his edifice shaken after the work is finished. This was the 
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position I was placed in by a letter of Mr Bertrand Russell, just when the printing of this volume was nearing 
its completion”.  

In fact, it would turn out that the whole project of finding an all-encompassing system of logic, that could 
deal with all of mathematics, is doomed. Such a system would consist of a set of axioms, along with some 
rules of inference that allow further statements to be deduced. The ideal is to find such a system covering 
the whole of mathematics which is both consistent and complete. “Consistent” means there are no 
contradictions in the system: false statements cannot be derived from the axioms. “Complete” means that 
every true statement that can be made within the system can be proved within the system, starting from the 
axioms and only using the allowed rules of inference). Combined, it means every statement we can make 
within the system is either true or false (not both), and we can prove it in the system if and only if it is true. 
Kurt Gödel famously showed (Gödel’s Incompleteness Theorem) that this is impossible, even if we restrict 
our attention only to mathematical properties of the natural numbers. The full argument is highly technical, 
but in essence he showed that if a system is sufficiently complex to contain all the kinds of statements we’d 
need, then it is possible to make a statement in the system that says, in essence, “This statement cannot 
be proved within the system”. Now, if the statement is false, then it can be proved within the system. But 
the system is supposed to be consistent, which means only true statements can be proved. So, the 
statement can’t be false. Therefore, the statement is true. But that means it cannot be proved within the 
system. The upshot is that we have a statement we know is true, but our system cannot prove it! This 
doesn’t mean mathematics is broken, but it does mean that there’s no hope of a dystopian future where the 
whole of mathematics can be completed by putting some axioms in a logic machine and cranking the 
handle until the proof or refutation of the Riemann Hypothesis (and every other conjecture) falls out. With 
this good news for the ongoing employment prospects of mathematicians, it seems a good place to finish.   

© Professor Sarah Hart 2024 

 

References and Further Reading 

• If you enjoy thinking about mathematical puzzles, you will be delighted by literally anything written 
by Martin Gardner. He inspired generations of mathematicians and puzzle enthusiasts, and regular 
events are held in his honour by the G4G (Gathering 4 Gardner) community. On the 21st of each 
month in the last couple of years, G4G has been hosting a virtual “Celebration of Mind” and 
everyone who loves mathematics, puzzles, literature, skepticism, and magic of all types is invited to 
join. https://www.gathering4gardner.org/  

• Similarly, anything written by David Singmaster is sure to enchant. If you are interested in the 
history of recreational mathematics I strongly recommend his two-volume Adventures in 
Recreational Mathematics (World Scientific, 2022). Not only does it describe hundreds of puzzles, 
their origins and solutions, but it also has an extensive bibliography of historical sources and 
hundreds of references if you want to dig deeper, so it’s an indispensable starting point. 

• The British Society for the History of Mathematics has regular events and is planning a recreational 
mathematics conference in late 2024. If you join the society, you get access to the entire archive of 
its journal, which has regular articles on the history of recreational mathematics, including several 
by David Singmaster. https://www.bshm.ac.uk/  

• They’re of a mature vintage nowadays but for my money you can’t beat Raymond Smullyan’s books 
of logic conundrums – the liar paradox is just the start! Any one of these will give you days of 
enjoyable paradoxical puzzling: What Is the Name of This Book? (1978); This Book Needs No Title 
(1980); To Mock a Mockingbird (1985); and Forever Undecided (1987).  

• I mentioned that other kinds of games and puzzles had been discussed in some of my earlier 
Gresham lectures. These are as follows. 

o The maths of Sudoku & Latin squares: https://www.gresham.ac.uk/watch-now/maths-sudoku 
o The maths of board games: https://www.gresham.ac.uk/watch-now/maths-games  
o Lottery-winning maths: https://www.gresham.ac.uk/watch-now/lottery-maths  
o The maths of coins and currencies (for the Fibonacci “thirty birds” problem 

https://www.gresham.ac.uk/watch-now/maths-coins)    

A note on images used in the lecture 

To the best of my knowledge all the images used are either in the public domain, or may be used for 
educational purposes under fair use rules, or were created by me.  
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