

16 April 2019

Text Mining:
How Do Computers Understand Language?

PROFESSOR RICHARD HARVEY FBCS

Text is everywhere. Not only is it the intelligent person’s communication mechanism of choice, the widespread
use of email, twitter and the web means that text is the King of the Internet Jungle — it is highly expressive, very
compact and relatively portable. However, drawing automatic inferences from text has proven to be a remarkably
tricky problem and unlike previous lectures in this series on audio and image recognition, I feel that there are
many mysteries of text that have yet to be revealed to computer scientists. Let’s look at some.

Nowadays every modern computer has a keyboard and a method for displaying text1. However, scouring back
through the history of early computing for this lecture, I was surprised to find that the keyboard was a
comparatively late addition to the operator’s console of a computer. The earliest picture I can find of a computer
qwerty keyboard is of one attached to an operator’s console of a UNIVAC 1 computer dating from the 1950s2.
And, notwithstanding arguments for alternative keyboards, the qwerty keyboard has remained a firm favourite
ever since. Modern digital computers handle numbers, usually in chunks of 8-bits. With 8-bits one could represent
28 = 256 possible characters so all that was needed was an agreed standard on what was meant by each number,
then computers could handle text. There was relatively early agreement on how best to map American English
into the 256 numbers. The map in common use was called ASCII (the American Standard Code for Information
Interchange)3 and “everyone” knew that, for example, decimal 32 (Hexadecimal 20) represented the space
character. Since early commercial computers were made by Americans there was an interval of a few decades
when learning to program also meant learning how to spell like an American! Nowadays computers are more
inclusive, and we use Unicode which handles around 140,000 characters (or strokes) from all the major languages
but Unicode is more complicated and not yet a completed project4. Character encoding is important, as it allows
billions of people around the world to access the internet and information technology using symbols with which
they are familiar but as far as computers are concerned, symbols are symbols — we can process them, count them,
display them, without understanding them at all. Indeed, in the early days of Artificial Intelligence this very
argument was used by Roger Searle to argue that computers were incapable of thought. In Searle’s “Chinese
room” are non-Chinese-speaking-people receiving pieces of paper containing English text and then following a
set of complicated rules, they manipulate the English characters into Chinese and eject slips of paper that are
translations of the English. Looking back on this argument, it seems naïve and childish, but it is actually a good
model of how a computer handles text at a low level – by shuffling symbols around.

1 Or what used to be quaintly called a VDU or Visual Display Unit.
2 Early computers had no need of integrated keyboards as they were programmed via punched cards or tapes which themselves were
created separately.
3 It led to a joke that British computer scientists found hilarious at the time “Arthur ASCII – what a character!” Unfortunately, the
people old enough to know who Arthur Askey was were too old to know about ASCII and those young enough to know what ASCII
is were too young to know who Arthur Askey was. It is therefore a joke with the narrowest of demographics: British Computer
Scientists in their 50s.
4 Unicode is not without its controversies. There is considerable dispute as to whether all Japanese characters can be properly
represented using strokes for Chinese, Japanese and Korean characters. According to Wikipedia, In 1993, the Japan Electronic
Industries Development Association (JEIDA) published a pamphlet titled "未来の文字コード体系に私達は不安をもっています
" (We are feeling anxious for the future character encoding system JPNO 20985671). I shall enter this title into any competition for
the most abstruse document title in the world.

2

One of the simpler analyses of text is to count the frequency of occurrence of the symbols. If we are just counting
single units then these are referred to as unigrams. If we are counting pairs of characters then these are bigrams,
threes trigrams and so on. Counting n-grams, can be surprisingly effective. It is well known from early cryptoanalysis
that unigram frequency tables can be highly distinctive of language and the domain5. Likewise, higher-order n-
grams. Despite the antiquity of this idea, it is still in common use for language identification, and for the
identification of authors and topics. Indeed, it is rather gratifying that a rather ancient method [1] still has
something to offer modern times. In [1] it is noted that, if we order N-grams by frequency then the most common
are the unigrams (which identify the language) then come the common prefixes and suffixes (which are more
indicative of topic, domain of knowledge and authorship).

When considering N-grams of characters it is natural to consider extending the idea to consider N-grams of words.
Of course, this is more challenging. If there are M characters in a language then there are M unigrams, M2 bigrams,
M3 trigrams and MN N-grams. Even for modest M and N this can be a very large number indeed. For 5-grams
in the Italian language then we need to store 215 or 4 Million numbers. Not impossible, but to accurately estimate
the frequency of 4 Million numbers needs around 40 million characters (1600 pages of typed text). This problem
is called the “curse of dimensionality” — as N increases linearly, the amount of storage and computation increases
exponentially. Several traditional cures have been proposed to this problem, but as we shall see, none of them
very satisfactory.

To process more than a few characters of text, people have proposed using word N-grams. This is fine for small
vocabularies (a few thousand words) but can soon become intractable. Some people advocate removing small
words that stop good text retrieval working. These, so called, “stop words” are found by a variety of different
methods and lists exist ([2] for example). However, there is no general agreement what these words are and it feels
rather unsatisfactory to hand-remove something which is patently learnable. That said, “tokenisation” which is
the removal of punctuation and the merging of synonyms is usual. Another approach is “stemming”. The classic
algorithm, devised by Martin Porter [3], is known as the Porter Stemming algorithm and is a staple of university
Information Retrieval modules. The idea is than words such as “run”, “runner” and “running” all relate the same
concept of high-speed human power bipedal motion so let us just return the stem of the word “run” and save a
lot of time and effort later. The failures of Porter stemming are well known and Wikipedia lists “universal”,
“university”, and “universe” as being incorrectly stemmed to “universe.” Nowadays most people avoid stop-words
and stemming although they are still commonplace in old systems6.

A more modern viewpoint is to view text processing as two stages. In the first, the text is converted into a vector
of numbers. In the second stage we attempt to draw inferences from that vector of numbers. The second stage
is identical to the problem described in previous lectures which is known as pattern recognition (AI in the parlance
of the age). And the current trendy way of doing pattern recognition is to use deep neural networks (see previous
lecture). So, the nub of modern text processing is to convert text into a “feature” or a list of numbers, that is
representative enough of the text such that the problem can be solved. Since problems vary, it follows that features
vary, and the business of designing features (feature engineering) is something of an art.

We have already met one feature — the list of unigrams. In English there are 26 letter frequencies, so unigrams
provide a 26-dimensional feature detector. And that feature detector is good enough to solve really easy problems,
like differentiating Shakespeare plays from Sherlock Holmes novels. The bigrams list is rather longer (676
elements) but manageable and good enough to differentiate Shakespeare comedies from tragedies [4]. As we move
to N-grams the list becomes too long, so in [1] for example, the N-grams are sorted by frequency and only the
top 300 are considered — this is effective for language identification.

5 The idea was that, if a cryptographic system merely replaces a letter with another letter, then the letter frequencies will be unaffected,
and it is simple to crack the code. Needless to say, no modern cryptographic system, would do this!
6 Computer scientists rather charmingly refer to old systems as “legacy” systems. It must be one of the few recorded cases where a
legacy has the potential to reduce your fortune rather than increase it.

3

Another buzzword is the “bag of words” model. A unigram word model just counts how many occurrences of
words happen7 but it is debatable how much of the semantics this captures because in the bag of words model
the phrase “I killed Robin” is treated identically to “Robin killed I”. To overcome this issue there are a variety of
approaches which are variously known as “text embedding” or “text vector spaces” of which the most venerable
is a technique called Latent Semantic Analysis or LSA.

LSA derives from early work by the American psychologist George Kelly. Kelly was interested in untangling the
patient’s view of the world from the lens of the analyst — at the time it was commonplace for a psychoanalyst to
declare that they were a Jungian and therefore explain the patient’s condition in Jungian terms. Kelly thought it
was strange that a patients frame of mind might alter with the type of psychotherapist who was asking the
questions so, alongside his work on personal construct theory he devised a technique called “repertory grids”
which, using a mathematical technique called Singular Value Decomposition was able to factorise the matrix of
question responses into separate components. In our field the key matrix is the term-document matrix. If we
imagine three documents:
 D1 = “I killed Robin”
 D2 = “Robin killed I”
 D3 = “With my bow and arrow”

Then, if we ignore the stop words of “I”, “my,” “with” and “and” then we can construe these three documents
as a matrix

 arrow bow killed robin
D1 0 0 1 1
D2 0 0 1 1
D3 1 1 0 0

This is a matrix that contains a count of the terms in each document hence term-document matrix. Usually the raw
count is replaced with a count that is normalised by the number of times that term appears in all documents. This
is the TF-IDF (term frequency – inverse document frequency) matrix. The inverse document frequency is related
to the amount of information (see Lecture 1) that a term provides. The idea is to approximate the matrix above,
let’s call it X, with a simpler matrix X’ that itself is a product of three much simpler matrices X’ = U  VT. It turns
out that U encodes the relations between the documents and V the relations between the terms. In our example
“killed” and “robin” always appear together so they are the same concept (true enough). And that concept, the
killing of Robin, does not occur in Document D3. The space of terms in this example is 2. Concept 1 is the killing
of Robin and Concept 2 is the bow and arrow. In LSA we would say Concept 1 = 0.5 “Robin” + 0.5 “killing” and
Concept 2 = 0.5 “arrow” + 0.5 “bow”. If a new document comes along, we project it into this concept space and
our machine learning works using the size of the projection.

LSA is a mathematically attractive idea and therefore popular fodder in undergraduate courses on information
retrieval but I cannot honestly claim to have used it for very much. It still suffers from the bag of words restriction
and, despite being presented as a panacea for Search Engine Optimisation there is precious little evidence it helps8.
What is needed was a vector space that took account of linguistic context (words before and after a word). This
is exactly the idea behind word2vec and its variants [5].

Word2vec uses deep learning as described in a previous lecture. It uses an architecture with a bottleneck — a
window of five words is used as the input and the task is to recreate the input at the output. Six billion words
later, the network is trained. Precisely what it is modelling is still an ongoing puzzle (as with many deep neural
networks it is often not crystal clear on, they form their inferences) but the model is very impressive, and it maps
words to multidimensional vectors. The vectors usually have around 1000 dimensions which is one of the reasons
why they are hard to visualise. However, one test of the system is to check that vector differences are meaningful.

7 As Eric Morecombe protested – “I am playing all the right notes…not necessarily in the right order.”
8 The idea was that augmenting one’s webpage with synonyms would help the search engine better map your document into its
concept space. Since search engines do not use LSA the reasoning was fanciful.

4

So if we input the word “France” and get the vector output v(“France”) (here I am using a bold v to denote a list
of 1000 numbers) then as the capital of France is Paris it would be remarkable if v(“France”) – v(“Paris”) +
v(“Italy”) = v(“Rome”). But this is exactly what happens. Furthermore, words that mean similar things all map
to similar vectors. Of course, there are now many incremental improvements to Word2vec but the basic idea
persists and is the basis of many impressive text processing systems.

Such systems can also be thought of as machine translation — one set of text is “translated” to another set via
this vector space (also known as an “embedding”). Let’s imagine we had a very large set of inputs, each input
describing the review of a restaurant, and outputs which were the review. The input might be:

5 Public House Las Vegas NV Gastropubs Restaurants
Which is the short-form of Yelp review — a 5* review (a review that has previously been awarded fives stars by
readers of Yelp — of a Pub is Las Vegas, Nevada. And the associated output is a review
Excellent food and service. Pricey, but well worth it . I would recommend the bone marrow and sampler platter
for appetizers.

So, if we learn the relationship between the eatery and the review then we can generate 5* or 1* reviews at will.
Currently this is done by hand – one pays humans to write fake reviews in a process known as “Crowd turfing.”
But now crowd-turfing can be done automatically [6] and, in tests, humans cannot tell the automatic fake reviews
from the human ones (fake or otherwise). One challenge of the system is that the first attempt at computer
generated reviews generated texts that were too grammatically correct (real people make frequent errors) so these
reviews must be corrupted to look human! Incidentally, machine learning can easily tell computer generated
reviews apart from human ones. Furthermore, there are systems that claim to be able to spot fake reviews so, for
the time-being, your review of La Gavaroche is safe.

More impressively, a group of researchers collated 8300 images and poems inspired by those images and a
collection of 93,000 poems. Again, the task is “translate” the image into a poem. Their methods are quite intricate,
and the results do not yet fool the experts but they are good enough to fool some of the people some of the time
[7].

That said, machine translation is not perfect — in our earlier lectures we ran an online translation system provided
as a free add-on for Microsoft PowerPoint. Although it was considerably better than my efforts at Chinese, it was
still quite errorful. One of the standard challenges of machine translation is gender9. Human translators resolve
these imprecision by parsing sentences over long distances (many words apart). Current embeddings cover a small
window so are well suited for poetry but I fear that legal documents, where the definitions are pages away from
their use might be a challenge.

The current apex of achievement in text processing is IBM Watson’s triumphant win at “Jeopardy”. Jeopardy is
an interesting quiz since the questions are often highly elliptical. Thus, under a category such as “Presidential
poetry”. Might be a clue of “Barrack’s pack animals”. To which the contestant might be expected to answer,
“What is Obama’s Llamas?” The rules state that the contestant should formulate a question to which the original
clue is an answer. It is highly impressive that Watson was able to beat the two best champions of this game and
without access to the internet. The TV programme made compelling viewing not only because of Watson’s
impressive feats but also because of its infrequent errors — as with many neural systems the errors were often
outlandish or childish. A nice feature of the Watson system was a probabilistic assessment of its own confidence
— if it was confident it buzzed in early.

In summary computer text processing has had a brief period in the doldrums where many of the classic algorithms
were over ten years old (this is very unusual in computer science). That time is now over and the new tools of

9 Professor Andy Stanford-Clark alerted to me this example. Type “She is a Doctor. He is Nurse” into Google Translate. Translate to
Turkish and then back to English. You should get “He is Doctor. She is Nurse.” Clearly in gendered languages translations can be
quite subtle.

5

vector embedding, and neural translators are opening a whole new world of text processing some of which
overlaps into the field of creativity which is the topic of the next lecture.

1. Cavnar, William B. and John M. Trenkle. "N-Gram-Based Text Categorization". Proceedings of SDAIR-
94, 3rd Annual Symposium on Document Analysis and Information Retrieval (1994)

2. https://code.google.com/archive/p/stop-words/
3. M.F. Porter, 1980, An algorithm for suffix stripping, Program, 14(3) pp 130−137.
4. “Unigrams, bigrams and LSA. Corpus linguistic explorations of genres in Shakespeare's plays”, January

2008, in: “New Directions in Literary Studies”, Chapter: 5, Publisher: Newcastle, England: Cambridge
Scholars Publishing, Editors: W.Van Peer & J.Auracher, pp.108-129

5. Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word Representations in Vector Space".
arXiv:1301.3781

6. Juuti M., Sun B., Mori T., Asokan N. (2018) Stay On-Topic: Generating Context-Specific Fake Restaurant
Reviews. In: Lopez J., Zhou J., Soriano M. (eds) Computer Security. ESORICS 2018. Lecture Notes in
Computer Science, vol 11098. Springer.

7. “Beyond Narrative Description: Generating Poetry from Images by Multi-Adversarial Training”, Bei Liu,
Jianlong Fu, Makoto P. Kato, Masatoshi Yoshikawa, ACM Multimedia 2018.

© Professor Richard Harvey 2019

https://code.google.com/archive/p/stop-words/

