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Gresham Lecture
Four Centuries of Logarithms
lan Stewart 24.1.97

The first Gresham Professor of Geometry, appointed four hundred years ago, was Henry
Briggs. Among his claims to fame is the invention of logarithms — in the form that we now
use. Logarithms themselves first came to light in the work of John Napier, and the idea seems
to have originated around 1594. Briggs made a significant improvement on Napier’s original
conception, making the idea far more practical (and mathematically more natural).

For most of the intervening four centuries the main use of logarithms was to facilitate
arithmetical calculations. Logarithms reduce multiplication to addition, which is easier and
much quicker. They also form the basis of the slide rule. Within the last twenty years,
however, slide rules have been replaced by calculators, and logarithms are seldom, if ever,
used for artihmetical purposes.

So have logarithms gone the way of the dodo?

Let’s see how they have fared over the centuries.

Century 1: 1594 to 1699
Napier published his system in 1614, but he wrote that it took him some twenty years
to invent it. In modemn notation, the underlying idea is the power law
x3xb = xatb.
To multiply two numbers u and v, find a and b so that
u=x2
v=xP
and observe that uv = w where w is such that
w = xatb.
Again in modern notation, we have
a=log,u
b=1log, v
a+b =log, w.
However, this is not exactly how Napier proceeded. In modern notation, his method led to the
value
Nap log x = 1010[10g(1010) - 1og,, x]
where e = 2.71828... is the ‘base of natural logarithms’. But modern notation, and even the
concept of e, did not exist at that time.

Henry Briggs was the first Gresham Geometry Professor and also the first Savilain
Professor of Geometry at Oxford. In 1615 he visited Napier at his home in Scotland, and they
discussed ways to improve the concept of a logarithm to make it more practical to use. Briggs
in effect proposed using powers of 10, so that when



10%=y
then
a=logipy.
One major advantage is that
logp(10y) =1+ logioy
loglo(IOOy) =2+ loglo y
log;(1000y) =3 + logioy
and so on.

Briggs undertook to calculate a table of logairthms to base 10, and to publish it. It
appeared as Arithmetica Logarithmica in 1624,
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Fig.1 Title page of Napier’s Logarithm Tables.



Later in the same century Newton introduced the calculus, and it was discovered that
the logarithm was related to the area under a hyperbola.
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Century 2: 1700 to 1799
This is the century of Leonhard Euler, who made the logarithm (and its inverse

function, the exponential) the basis of analysis.
Euler introduced the symbol e for the base of natural logarithms, defining it as

e =lim, _5 ., (1+ /o)™
Then, if y = e*, we have x = log, y (or just log y).
He also showed that (using complex numbers in which i =V-1)
elX=cos x +1i sin x
linking logarithms and exponentials to trigonometry.




Century 3: 1800 to 1899
This century witnessed the flourishing of complex analysis, and there was
considerable controversy over the value of
log (-1). '
Eventually Euler sorted it all out by arguing that
log (-1) =im + 2kx
for any integer k. Complex logarithms are many-valued.
Gauss used this fact to prove the ‘fundamental theorem of algebra’ that any polynomial
equation of degree d over the complex numbers has d complex solutions.
Cauchy used it as the basis for a method of studying complex analytic functions.

Century 4: 1900 to 1997
In the modern era, the roles of the logarithm and the exponential have become
inordinately varied. Here are just three areas:

Dynamical Systems
The solutions of systems of linear differential equations
dx/dt = Ax,
where X is a vector and A a matrix, are given by the exponential function:
x() = xq et

Fractals
The fractal dimension of a self-similar fractal is given by a formula involving
logarithms. For example the Cantor set has dimension log 2 / log 3 = 0.6309.

Probability

Benford’s Law, a probabilistic curiosity used, among other things, by tax authorities to
detect fraud, holds that in any collection of natural data the probability that a given number has
the first digit n is log(n+1)-log(n). So 1 is more likely than 2, and so on. Examples include
the sizes of islands in the Bahamas and currency rates in newspapers.

Logarithms are alive and well.

FURTHER READING

Eli Maior, e: The story of a number, Princeton University Press 1994.
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One major advantage is that
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Briggs undertook to calculate a table of logairthms to base 10, and to publish it. It
appeared as Arithmetica Logarithmica in 1624.
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Later in the same century Newton introduced the calculus, and it was discovered that
the logarithm was related to the area under a hyperbola.
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Century 2: 1700 to 1799

This is the century of Leonhard Euler, who made the logarithm (and its inverse
function, the exponential) the basis of analysis. -

Euler introduced the symbol e for the base of natural logarithms, defining it as

e=lim, _ o, (1+ U/n)R,
Then, if y = eX, we have x = log, y (or just log y).
He also showed that (using complex numbers in which i =V-1)
el*= cos x +1i sin X
linking logarithms and exponentials to trigonometry.



