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~resham Lecture

The Pattern of Tiny feet

Acenti~e washappyquite,
Unti a frogh fun
Said,%y, whichlegcomesafterwhich?’
~is raisedhermindtosucha pitch,
Sheby dismt~ ina ~tch
Consideringhowtorun.

Mrs. E&d Crater

Nature is nothing if not rhythmic, and its rhythmsare many and varied. Ourhearts
and lungs foflow rhythmic cycles whose timing is adaptedto our body’sneeds. Many of
nature’s rhythms are like the heartbeat: they take care of themselves, running ‘in
background. Others are like breathing: there is a simple‘default’pattern that operates as
long as nothing unusual is happening, but there is also a more sophisticated control
mechanism fiat can kick in when necessary and adapt thoserhythms to immediate needs.
ControHablerhythms of this kind are partictiarly common — and partictiarly interesting—
in locomotion. h leggd animals the default patterns of motion that occur when conscious
control is not operating are called gaits.

Unti the developmentof high-speedphotographyit wasvirtufly impossibleto find
out exacdy how an animfls legs move as it runs or gallops: the motion is too fast for the
human eye to unravel. Legend has it that the photographic technique grew out of a bet on a
horse. In the 1870s Leland Stanford, former governor of California, bet $25,000 that at
some times a trotting horse is completely off the ground. To settle the issue a
photographer, who was born Edward Muggeridge but adopted the name Eadweard
Muybndge, photograph the different phases of the gait of the horse. To do so he placed
a line of cameras with rnpwires for the horse to trot past. Stanford, it is said, won his bet.
Whatever the truth of the legend, we do know tiat Muybridge went on to pioneer the
scientific study of gaits. He dso adapted a mechanical device known as the zoetrope to
display hem as ‘moving pictures’, a road that in short order led to Hollywood. SO

Muybridge foundd both a science and an art.
This lecture is about gait analysis, a branch of mathematical biology that grew up

around the questions ‘how do animals move?’ and ‘why do they move like that?’. The
organizing principle behind such biological cycles is tie mathematical concept of an
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oscillator — a unit whose natural dynamic causes it to repeat the same cycle of behaviour
over and over again. Biology hooks together huge ‘circuits’of oscillators, which interact
with each other to create complex patterns of behaviour. Such ‘coupled oscillator
networks’ underlie many of the rhythms of life.

Why do systems oscillate at dl? The answer is that this is the simplest thing you
can do if you don’t wm~ or are not allowed, to remain stifl. Why does a caged tiger pace
up and down? Its motion results from a combination of two constraints. First, it feels
restiess and does not wish to sit still. Second, it is confined within the gage and cannot
simply disappear over the nearest hill. The simplest thing you can do when you have to
move but can’t escape altogether is to oscillate. Of course there is nothing that forces the
oscillation to repeat a regular rhythm, the tiger is free to follow an irregular path round the
cage. But the simplest option — and therefore the one that is most likely to arise both in
mathematics and in nature — is to find some series of motions that works, and repeat it
over md over again. And that is what we mean by a periodic oscillation.

Many osc~ations arise out of steady states. As conditions change, a system that
has a steady state may lose it and begin to wobble periodicdly. In 1942 the German
mathematician Eberhard Hopf found a general mathematical condition that guarmtees such
behaviou in his honour this scenario is known as Hopf bifurcation. A more evocative,
but less formal, name is ‘wobble catastrophe’. The wortings of a clarinet, for example,
depend upon the wobble catastrophe: as the clarinetist blows air across the insmment’s
reed, the reed ceases to remain steady and ~gin to vibrate. This vibration is transmitted to
the air, and the vibrating air is what we hear as music.

Two biologically distinct but mathematically similar types of oscillator are involved
in locomotion. The most obvious osci~ators are the animal’s fimbs, which can be thought
of as mechanical systems, linked assemblies of bones, pivoting at joints, pulld this way
and that by contracting muscles. The main oscillators that concern us here, however, are
to be found in the creature’s nervous system, the neural circuitry that generates the
rhythmic elecrncd signals that stimulate and conmol the limbs’ activity. Biologists cdl
such a circuit a CPG, which stands for ‘central pattern generator’. Correspondingly, a
student of mine took to referring to a limb by the acronym LEG, allegedly for ‘locomotive
excitation generator’. Animals have two four, six, eight or more LEGs, but we know very
litde directiy about the CPGS that control them, for reason I shall shortly explain. ~A lot of
what we do know has been arrived at by working backwards or forwards from
mathematical models.

Some animals possess only one gait, only one rhythmic ‘default’ pattern for
moving their limbs. The elephant, for example, can only w*. When it wants to move
faster, it ‘ambles’— but m amble is just a fast w~, and the patterns of leg movement are
the same. Other animals possess many different gaity the most familiar is the horse. At
low speeds horses wak, at higher speeds they trot; and at top speed they gallop, Some
insert yet another type of motion, the canter, between trot and gallop. The differences are
fundamenti: a trot isn’tjust a fast wW, but a different kind of movement altogether.

In 1965 the zoologist M.Hildebrand noticed that most gaits possess a degree of
symmetry. For example when an animal bounds, both front legs move together and both
back legs move together, so the bound gait presemes the animal’s bilateral symmetry.
Other syrnmernes are more subtle: for example the left half of a camel may follows the
same sequence of movements as the right half, but half a period our ofphse — hat is,
after a time delay equal to half the period. So the pace gait has its own characteristic
symmetry: ‘reflect left and right and shift phase by hdf a period. You use exactly this
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type of symmetry-breaking to move yourself around: despite your bilated symmetry, you
don’tmove both legs simultaneously! There’s unobvious advantage to bip&in notdoing
so: if they move both legs at once they fdl over.

The seven commonest quadrupedal gaits are the trot, pace, bound, wti, rotary
g~op, transverse gallop, and canter. In the mot, the legs are in effect linked in diagonal
pairs. First the front left and back right hit the ground together then the front right and
back left. In the bound everything is linkd lefi-right, so that fxst the front legs hit the
ground together, then the back legs. The pace similarly fiks the movements in the fiont-
back direction: fmt the two left legs hit the ground, then the two righ~ The wti involves
a more complex but equtiy rhythmic pattern: front left, back right, front right, back left,
then repeat. In the rotary gtiop, the front legs hit the ground Most together, but with the
right (say) very slighdy later than the left then the back legs hit the ground tiost together,
but this time with the left very slighdy later than the right. The transverse gallop is similw,
but the sequence is reversal for the rear legs. The canter is even more curious: fmt front
lef~ then back right, then the other two legs simultaneously. There is also a rarer gait, the
pronk, in which ti four legs move simultaneously. (For pictures of these gaits, see the
ed of these notes.)

The pronk is uncommon outside of cartoons but is sometimes seen in young deer.
The pace is observed in camels, the bound in dogs; cheetahs use the rotary gallop to travel
at top speed. Horses are very versatile, md use the w*, trot, transverse gallop, and
canter, depending upon circumstances. Other animals dso use several gaits, and like the
horse they switch between them.

This ability to switch comes from the dynamics of GPGs. The basic idea behind
CPG models is that the rhythms and phase relations of animal gaits are determined by the
natural oscillation patterns of relatively simple neural circuits. mat might such a circuit
look like? Trying to locate a specific piece of neural circuitry in an animal’s body is like
searching for a neede in a haystack: to map out the nervous system of au but the simplest
of animals is well beyond the capabilities of today’s science. So we have to sneak up on
the problem of CPG design in a less direct manner.

One approach is to work out the simplest type of circuit that might produce dl the
distinct but related symmetry-patterns of gaits. At frostsight this looks We a Ml order, and
we might be forgiven if we tried to concoct some elaborate structure with switches that
effected the change from one gait to mother, like a car gearbox. But the theory of the
wobble catastrophe tells us there’s a simpler and more natural way. It turns out the
symmetry patterns obsemed in gaits are strongly reminiscent of those found in symmetric
networks of osci~ators. Such networks naturdy possess an entire repertoire of oscillation
pattern, classified by a general mechanism hewn as symet~ breaking. The networks
cm switch between them in a nati mannen you don’t need a complicated ‘gearbox’.

For example, a network representing the CPG of a biped requires ordy two identicd
oscillators, one for each leg. The mathematics shows tiat if two identicd oscillators are
coupld together — connected so that the state of each affects that of the other — then there
are precisely two typical oscillation patterns. One is tie in-phase pattern, in which both
oscillators behave identicdly. The other is the out-of-phase pattern in which both
oscillators behave identically except for a hti-period phase difference. Suppose that this
signal from the CPG is used to drive the muscles that control a biped’s LEGs, by assigning
one set of muscles to each oscillator. Then the resulting gtits inherit the same two patterns.
For the in-phase oscillation of the network, both legs move togethe~ the mimd performs a



two-legged hopping motion, l~e a k~gm~. In COnUastJtie out-of-Phase moaon Of he
CPG produces a gait resembling the human Wak. ~ese two gfits are the ones most
commonlyobserved in bipeds. (Theycan of course do otier tiings, for example hopping
on one leg, but in that case they effectivelyturn themselvesinto one-leggedtimds.)

What about quadrupeds? The simplest model is now a system of four coupled
oscillators — one for each LEG. Now the mathematics predicts a greater variety of
patterns — and nearly M of them correspond to observed gaits. The most symmetric gait,
the pronk, corresponds to W four oscillators being synchmised — that is, to unbroken
sYmme~. The next most symmetric — the bound, pace, and ~ot — correspond to
grouping the oscillators as two out-of-phase pairs: fiontiack, Ieftiright, or diagondly. ,
The W* is a chctiating figure-eight pattern and agtin occws nawdly in the mathematics.
The two kinds of gallop are more subtie. The rotary gallop is a mixture of pace and
bound, and the transverse gallop is a mixture of bound ~d trot. The canter is even more
subde and not as well understood.

The theory extends readily to six-legged creatures such as insects. For example,
the typical gait of a cockroach, and indeed of most insects, is the tripod, in which the
mi~e leg on one side moves in phase with the front and back on the other, and then the
other three legs move together, half a period out of phase witi the first set. This is one of
the nati patterns for six osci~ators connected in a ring.

Myriapods (centipedes and mi~ipedes) produce rippling patterns of leg-movements.
These can be understood as traveling waves in l~ge networks with polygonal symmetry,
corresponding to (mathematically!) gluing the creatures’ front ends to their rears to keep the
wave traveling. The movement of fish, Uzards, worms, and snakes can be described in
similar ways. Even some types of protozoon — microscopic single-ce~ed creatures —
propel themselves along by rotating a helical tail, or flagellum, just like the mechanical
device known as an Archimedean screw. ~

The symmetry-breaking theory dso explains how animals can change gait without
having a gearbox: a single network of oscillators can adopt different patterns under
different conditions. The possible transitions between gaits are also organised by
symmetry. The faster the animal moves, the less symmetry its gait has: more sped
breaks more symmetry. But an explanation of why they change gait requires more dettied
information on physiology. In 1981 D.F.Hoyt and R.C.Taylor’ discovered that when
horses are permitted to select their own speeds, depending on terrain, they choose
whichever gait minimises their oxygen consumption.

The big message here is that nature’s rhythms are often linked to symmetry, and
that the patterns that occur can be classified mathematically by invoking the general
principles of symmet~-breting. Of course this doesn’t answer every interesting
question about the natural world — but it does provide a unifying framework, md it often
suggests interesting new questions. In particulm, it bth poses and answers the question
‘why these patterns but not others?’ The lesser message is that mathematics can
illuminate many aspects of nature that we do not nodly think of as being mathematical.
This is a message that goes back to the Englishman D’Arty Thompson, whose classic but
maverick book On Growth and Form set out an enormous variety of more or less
plausible evidence for the role of mathematics in the generation of biological fom and
behaviour. h an age when most biologists seem to think that the only interesting thing
about an animal is its DNA sequence, it is a message that needs to ~ repeated, loudy and
often.

0 Ian Stewart
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FIGURES

me bound of tl!elong-tailed Siberian souslik retains bilateral symmetry

TIIe pace of t\zecamel break bilateral symmetry
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The amble of the elephant

The trunszlersegallop of a cheetah

Therotn~ ~fillopof a horse



Tze canter of a horse

@ 19M United Feature Syndicate, Inc

.4feline prof?k

‘0°5 0

n“fl
0.5

0.?5 0= 05 0

‘0°5 0

Hn
0.8

0 05 OA 05

P:lct (Elck ) (.:tntcr

o 0 0

nn

o

05 0s o 0

Duund Pronk



.!

‘ (,

p~u 8

(a)

(b)

l\\
A Walk

0 0 Trot
24

● Gallop

I+***20 0
0
0

s.
o

E W“
00

●
● *

●

0%0 ●
o ●°

16 0
● 0

●
●

A o 00

i -A ’00 0::: ●

i. ,.*

12F

8

L

4

‘o I 2

P ‘i

Walk Gallap

Trat

Walk

Running speed (ins-’)
---

-----------
..-. ..-

..-
..-

. .
a. Trot ~--------

~+a~~ ~~( ~[------------------------------
Speed

Figure 8.18 (a) Oxygcll coflsuttrptio}l @ertical axis) ofllorses forz~arious gaits a)zd
speeds (llori:o?ltal axis). (b) l)zterpretatio~lasabifircatio)] diagra~)r,sat?le
horizo]ltal scale


