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Healthcare was based on folklore until relatively recently. Disease was not understood until 19th
century discoveries made by Semmelweis, Pasteur, Lister and others led to the recognition and, later,
the wide acceptance of the germ theory of disease. Healthcare took a further leap forward with the
discovery and use of vaccines and antibiotics, most notably penicillin, almost 100 years later. Today, a
growing list of innovations — anæsthesia, X-rays, MRIs, chemotherapy, hearing aids, pacemakers, and
methodologies like randomised controlled trials (RCTs) — have transformed healthcare and our ex-
pectation of a productive and healthy life. We now take for granted we can eliminate major scourges,
and we believe we can in principle control and eliminate new problems such as ebola. However, we
are now learning that indiscriminate use of antibiotics leads to bacterial resistance, and this in turn is
focusing effort to find new solutions.

The revolutions in healthcare could be rephrased as: first, seeking a scientific basis for a disease, then
transform the culture and effectiveness of healthcare practice, and finally see treatment itself as part
of the process: healthcare is not just about targeting disease in isolation, but is situated in the larger
context of social and patient care as well as education and long-term improvement. For instance,
while patients want antibiotics because the germ theory is familiar to everyone, this is not always the
best form of treatment.

This Gresham Lecture, “Computer Bugs in Hospitals: A New Killer,” shows we can follow an analo-
gous path with computer bugs in healthcare — computers are the new medical intervention. That’s the
promise, but a few people are starting to recognise that computer bugs (and poor software engineer-
ing more generally) cause and exacerbate patient harms and also harm staff. These bugs are avoidable
because there is a growing scientific approach to avoiding and managing them, and hence to reduce
harms. It is an interesting and worrying story.

These lecture notes are more detailed than an hour lecture can possibly be. We hope the lecture will
inspire you to read and think about the issues and the ideas raised in these notes, and we invite you
to take action.

Our lecture falls naturally in three parts:

1. The scale of error in healthcare and computer bugs;
2. Computer bugs lead to patient harm;
3. Pathways to solutions.

These Gresham College Lecture notes are copyright under Creative Commons CC BY-SA; authors Martyn Thomas
& Harold Thimbleby, 2018. They are available online at gresham.ac.uk
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1 The scale of error in healthcare and computer bugs

Preventable deaths and harm in hospitals is a serious problem internationally.

A recent study [36] suggests that there are 440,000 preventable adverse events (PAEs) in hospitals
in the USA that contribute to the death of patients each year. As a comparison, this makes PAEs a
cause of one sixth of all deaths in the USA. The population of the USA is about 325 million and the
population of the UK is about 65 million so (by extrapolation and assuming similar healthcare risks
in the two countries) the equivalent number of deaths where PAEs are involved in the UK would be
88,000 per year. As a comparison, “only” 1,713 people were reported killed on the road in the UK in
2013 [14]. So, on these estimates, 50 times more people die following PAEs than on the roads each
year. There are many more life-changing injuries than deaths and many other injuries that are not
life changing that cause suffering and possible loss of earnings — that’s a huge amount of trauma to
patients, to their families and to the staff who care for them.

The UK data from the National Reporting and Learning System [59] records fewer serious adverse
events than we estimate here. Their official numbers are 10,800 events each year that cause serious
harm or death to patients. There are many reasons why PAEs are under-reported (we discuss some
below). The potential scale of the problem and the uncertainties — even disagreements — in the data
strongly suggest there should be urgent, independent research to establish the true scale of preventable
deaths and serious injuries.

Individual patients may have better or worse experiences than the national estimates. Thankfully
most of us have none. One example, reported in depth in [1], analyses a single patient averaging 100
incidents per year over a period of seven years.

Whatever the exact numbers, the figures are surprisingly large.

B This lecture addresses adverse events that are computer-related, as that is our area of expertise. We
believe that research in this area would be very beneficial — it won’t just determine the scale of the
problem, but it would help solve the problem and improve the health of the nation.
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A lot of attention is paid to cancer, diabetes and other conventional killers — typically (and thankfully)
patients have a long time to worry about them and whether there are possible cures. In contrast,
preventable errors typically kill very quickly and they usually happen to people who are already ill
— so they are easy to overlook or to disguise, and sometimes an error may be a mercy to a very sick
patient. When errors are noticed, it is usual to blame the nurse or doctor, and not recognise that the
errors are part of a bigger picture. If we witch-hunt the clinician, this achieves nothing other than
taking our eyes off the system problems that induced them to be caught up in the error. If people are
sacked for an error, the end result is we can fool ourselves that “errors do not happen here.”

It is interesting that death certificates do not mention error as possible cause of death, and very com-
mon errors are euphemised as “complications” that do not have to be disclosed. For all these cultural
reasons and more, the scale of preventable error hits us as disproportionate, but there are other ways
to conceptualise the impact . . .

According to the National Audit Office [56] there were 10,600 negligence claims registered with
NHS Resolution under its Clinical Negligence Scheme for Trusts in 2016–2017 (ten years earlier the
number was half that, at 5,300). The cost of these claims totalled £1.6 billion. The NAO expect this
to double by 2020–21. NHS Resolution’s Clinical Negligence Scheme for Trusts has made a provision
of £60 billion to pay for future claims of clinical negligence. These are resources that could have been
spent on better healthcare — and more dependable computing for healthcare.

It is likely that only a small percentage of injured patients or their families claim, for reasons that
include:

• because they don’t notice the error as such, or

• because they don’t know it was preventable, or

• because they may become incapable to report it (perhaps dead), or

• because they don’t want to make a claim, or

• because there are barriers to them doing so, including the difficulty of obtaining evidence and
clinicians’ [83], hospitals’ and manufacturers’ understandable reluctance to admit to being
caught up in error.

• Computer bugs, ironically, could be another reason: the computer system used to report
incidents may be faulty or too hard to use. Indeed, we both tried using the NHS incident
reporting web site on 28 January 2018; we got errors and were unable to proceed.

All of which means that the future costs might be much, much higher. We rightly care deeply about
road safety, so it is astonishing we are doing little about a problem that may be at least 50 times worse
and much more costly to the nation and to individuals.

1.1 Computers and healthcare

Healthcare is increasingly dependent on computer-based systems. Computers are used to schedule
and book appointments, to order and manage stocks of drugs and thousands of items of equipment, to
manage medical records, to optimise the use of beds, operating theatres, scanners and other facilities,
to control electronic medical devices, to monitor patients’ vital signs, to diagnose diseases and condi-
tions . . . and much more. In addition, so-called embedded computers are inside almost every medical
device, such as infusion pumps, incubators, MRI scanners, X-ray machines, dialysis machines, pace-
makers, . . . and even inside pills [3]. And, of course, almost everyone has mobile phones and apps,
using computers to run calculators, medical apps and communications systems (such as WhatsApp,
as well as conventional phone communications).
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Bar chart of leading causes of death, including estimated fatality from preventable harms in hospitals. The vertical
axis is US fatality. Percentages of total fatality are shown in each bar: percentages are likely to be comparable across
developed countries. (Other, less common, causes of death are not shown.) Assumptions for estimates A and B
are discussed in [36].

Within hospitals, there are thousands of computer systems, mostly networked together in unfath-
omable ways, and even with special systems (“middleware” — often configured in ad hoc ways) to
convert between one and another system. The variation in standards across the various systems re-
sults in the recognised problems of multiple logins for clinicians (slowing them down, and often
leading to insecure workarounds) as well as lack of interoperability for the patient data. Clinicians
find it easier to photograph screens than to use the systems to contact colleagues — thus undermining
basic information governance (they end up with patient data on their personal phones).

The leading causes of Preventable Adverse Events are errors such as [34]:

• delayed treatment or the wrong treatment,

• no treatment,

• errors of communication perhaps leading to misdiagnosis or operation on the wrong site,

• errors of context — perhaps leading to discharge in circumstances where the patient will be
unable to follow their care plan, or

• diagnostic errors.

Errors of omission and intentional errors [61] are hard to notice and may be under-reported. We
suspect, too, that computer related errors are under-reported because clinicians are not trained to
recognise them.

Because it is easy to envisage examples where a faulty computer system could cause or contribute
to each of these PAEs, and a better designed computer could predict, detect, prevent, or mitigate a
PAE, it seems reasonable to assume that computer system defects and deficiencies actually contribute
to a proportion of the harm. Computer systems support — or undermine — every stage of every
care pathway, from the initial GP appointment bookings through to the controlled injection of a
drug.
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1.2 Published data on computer-related healthcare incidents

A paper in the Journal of the American Medical Informatics Association [48] describes several published
studies of the risks to patient safety from the use of computers.

• In February 2010, the US Food and Drug Administration (FDA) reported receiving
information on 260 incidents with potential for patient harm including 44 injuries and six
deaths [81].

• In 2006 almost 25% of 176,409 medication errors reported to the United States Pharmacopeia
voluntary incident reporting database were computer-related [37].

• In contrast, a search of 42,616 incidents from 2003 to 2005, submitted to a voluntary incident
reporting database across one Australian state, yielded 123 computer related incidents. After
removing duplicate and unrelated incidents, 99 incidents describing 117 problems remained.
Only 0.2% of all incidents reported were computer-related.

The authors of the paper say “it is important to note that incident reports do not yield true frequencies
of errors or adverse events because they do not capture numerators or denominators, and are subject
to bias from a number of sources.” In particular, few clinicians are technically trained and able to
identify computing problems, so we expect significant under-reporting of computer-related errors.
In particular, what may seem to be “use error” is often caused by underlying computer error.1

We are faced with a spread of computer-related incidents from 0.2% to 25%, the likelihood of under-
reporting, the likelihood of bias, the difficulty of recognising harm that may only develop slowly
and over an extended period, and the difficulty of attributing causality. Nevertheless, it is clear that a
significant number of adverse healthcare incidents do occur that involve the use of computer systems,
that many of them have the potential to cause harm, and that some of them have contributed to or
caused avoidable injuries and deaths.

That there are errors and harm in healthcare on the one hand, and computer bugs on the other,
does not prove improving computer systems will improve healthcare outcomes — though it raises the
obvious, and urgent, research questions to find out.

While there are suggestive case studies, there has been virtually no systematic research to study any
causal relation. We note that the research by Han et al [25] showed a more than doubling of patient
mortality in a pædiatric ward after introducing a computer system.2 While it could be argued that
this only shows that a particular system used in a particular medical speciality was poorly configured
(or was in some way otherwise inadequate) and thus no general conclusions should be drawn, on the
other hand, the system was provided by a major supplier, it was not a new and untested system, and
the hospital itself was not naïve. Yet serious problems occurred because of the computers; indeed, the
paper argued that staff time lost to using the computer (which was therefore a loss to direct patient
contact) was not compensated by improved efficiency.

A recent 2017 study compared two EHRs (electronic health record systems) [31] and found one
caused over three times as many errors as the other, and twice as many clinicians using the better
system made no errors at all (for the specific tasks studied). Put another way, the worse EHR has
design bugs that cause preventable error; in fact 70% of errors are caused by its worse design or would
have been prevented by using the other design.

1We prefer to say use error meaning an error occurring during computer use, rather than the popular term user error
which prejudges the issue making it seem like an error made by the user. This lecture is about computer bugs: some user
errors are caused by computers not by users.

2Mortality rate increased from 2.80% (39/1394) before to 6.57% (36/548) after implementation ( p < 0.001); the ratio
is 2.35. See Han op cit for details.
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A very different study of hospital ambulatory care [67] shows doctors spend 37% of patient time
using computer systems, and for every hour they have direct contact time with patients, nearly 2
additional hours is spent on computers and desk work. Unfortunately there is very little unbiased,
rigorous research available: hospital computer systems cost billions and require major upheaval to
implement, there are financial incentives to believe they are more successful than perhaps they are,
and for complex reasons “gold standard” methodologies such as randomised trials are effectively im-
possible [41]. In short, to be effective, computers must provide added value greater than the lost time
and resources needed to use them at the point of care.

If we conservatively assume that only 1% of all preventable adverse events involve computer system
defects and inefficiencies (and that computer-related PAEs are as likely to cause serious injuries or
deaths as other PAEs), that would mean that computer system defects contribute to 880 deaths annu-
ally in England, to far more injuries, and to £16 million of the annual financial liability to the NHS
and £600 million of the financial provisions for future negligence.

Unlike almost any conventional intervention (like a new cancer drug), improving the safety of com-
puter systems would save money, both direct costs and litigation costs and insurance premiums.

1.3 How computers contribute to death and injury

In healthcare — despite the surprising statistic that the NHS is the world’s largest purchaser of fax
machines — computers are found everywhere. Computers are in pacemakers and in infusion pumps,
in MRI scanners and in operating theatres, in the systems that hold patient records, and in the many
other computer systems that support medical staff and that monitor, diagnose and treat patients. A
typical NHS trust has more than 150 different types of computer systems for administration, commu-
nication and professional support, plus many more that are embedded in medical equipment. Most
of these systems have safety implications, and all are vulnerable in some way to cyberattack.

The risk of serious cyberattacks has been assessed as a Tier One threat on the National Risk Register.
The scale of the threat from cyberattacks depends on the strength of the attacker’s motive (probably
in proportion to the damage they intend to cause) and the ease with which the attack can be carried
out. The head of the UK National CyberSecurity Centre said in January 2018 [46] that a serious
cyberattack on the UK was a matter of “when, not if.” That warning applies equally to healthcare
too.

The groups that carry out cyberattacks are (in rough order of capability) teenage vandals (“script
kiddies”), single issue activists (“hacktivists”), minor criminals, terrorists, organised crime groups,
and even nation states. Kits are readily available that enable unskilled hackers to build new attack
systems.

In the decade since one of us was on the Board of the Serious Organised Crime Agency, SOCA
(now the National Crime Agency, NCA), we have seen the cyberattack tools and methods that were
formerly only used by nation states migrate through organised crime down to ordinary criminals,
hacktivists and script kiddies. One example is the EternalBlue exploit that was developed by the US
National Security Agency’s elite Tactical Access Operations team, then stolen by a hacker group, The
Shadow Brokers, and published on the internet along with dozens of other exploits and tools — over
a gigabyte in total. Once published online by the Shadow Brokers as a toolkit, what was once an
obscure technical break for the NSA became within the competence of any basic hacker to use.

That exploit was used in the WannaCry ransomware attack that affected 200,000 computers running
Microsoft Windows, including some in the NHS [23,42]. Fortunately, the objective of the criminals
who wrote WannaCry seems to have been criminal extortion rather than terrorism, as the software
announced itself with a screen that informed the users that all their data had been encrypted and
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that the way to recover it was to pay a ransom in Bitcoins. Even though the NHS was not a specific
target of the WannaCry attack, 37 hospital trusts (including 27 acute trusts) were infected and locked
out of devices, almost 20,000 hospital patient appointments were cancelled, 44 hospital trusts were
not infected but experienced disruption, 21 trusts and 71 GP practices had systems trying to contact
the WannaCry command server (but were not locked out of devices), 595 GP practices were infected
and locked out of devices, plus there was an unknown amount of further NHS disruption [57]. The
disruption would have been worse had WannaCry not been stopped by a cybersecurity researcher
activating a “kill-switch,” albeit largely by chance.

Fortunately, WannaCry’s disruption to healthcare, though significant, was limited. But the Wan-
naCry software could easily have been designed to make changes to critical data instead of encrypting
it, because if files can be read and encrypted then, clearly, they can be changed arbitrarily. Imagine
what the effect would have been if the WannaCry software had instead been designed to change crit-
ical fields in medical data and if, rather than announcing itself with a ransom screen, it had remained
hidden until several backup cycles had passed. How quickly could the NHS recover if blood groups,
allergies and other life-critical fields in electronic medical records could no longer be trusted? Recov-
ery from backups can also be thwarted with a bit more thought.

• That WannaCry was able to encrypt healthcare data raises serious questions about
certification: the vulnerable systems were unreliable. How can a system be certified when it
can be adulterated? It is unverifiable. Hospitals should rely on effective monitoring and
backup processes and manufacturers should make systems that are capable of being managed
reliably.

A lot of hospital equipment is attached or could be attached to the internet, including many systems
that have safety-critical roles in treating, diagnosing or monitoring patients. Attacks can change the
drug delivery rates on infusion pumps remotely, or even reprogram someone’s heart pacemaker from
a few yards away and using bluetooth.

The scale and complexities of the cybersecurity healthcare problem is illustrated by the St Jude case. A
security company, MedSec, revealed cyber-vulnerabilities they had found in a St Jude pacemaker. This
resulted in the US FDA requiring 465,000 pacemakers to be reprogrammed to fix the bug [28]— these
are pacemakers inside patients, who would need to visit a competent hospital for the reprogramming.
In a twist, MedSec collaborated with Muddy Waters Capital who sold St Jude shares short to profit
from the anticipated fall in the share price. This, MedSec argues, was to fund their business of finding
security flaws.

Evidently, critical healthcare systems are being developed with insufficient thought for managing cy-
berattack threats. Often, they use software components that were designed for other purposes. They
may contain hidden services with default passwords that the user cannot change or does not know
about. If there are support arrangements at the beginning, they are likely to end before the device
is replaced, because (as Boston Scientific explained to the FDA at a workshop [32]) manufacturers
continue to use off-the-shelf software with a 3 to 7 year lifecycle in devices with a longer than 15
year expected life [20]. When support ends, these devices remain for a decade or more with all their
vulnerabilities. They are an open door that may expose connected systems and networks to uncon-
trollable risks. WannaCry is an example of this problem: it infected MRI scanners that were running
obsolete software that was no longer being maintained.

Medical equipment is not designed to the same standards as some other safety critical systems (for ex-
ample, flight-critical aircraft systems and ground-based air traffic control). Professor Nancy Leveson
has described in detail the defects in the system design and the software of the computer controlled
Therac 25 radiation therapy machine that massively overdosed and killed patients between June 1985
and January 1987 [44]. That was well known (at least to professional computer scientists) over 20
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years ago, but there is still little evidence of improvement in the quality of software and system design
or in the standards that regulators require before medical equipment can be used with patients.

The most significant regulator, the US Food and Drug Administration (FDA) regulates medical de-
vices, but it does not verify (or even test) the performance of individual devices because, as it says,

“The FDA does not conduct premarket testing for medical products. Testing is the
responsibility of the medical product manufacturer” [20]

The FDA reviews the documentation that the manufacturer provides to justify their device being
approved. For decades it has been sufficient to provide a demonstration to the FDA that a new device
is “substantially equivalent” to a device that has already been approved — the so-called 510(k) process.
In 2011 the US National Academies of Science reviewed the 35-year old 510k Process and found it to be
ineffective in assuring safety or clinical effectiveness. With regard to software, they concluded:

“Manufacturers are increasingly using software in devices, software as devices, and
software as a tool in producing devices. That trend is expected to continue. The
committee found that current guidance on software validation is insufficient for
preventing serious software-based device failures” [34]

The FDA is now recognising that the regulatory process for computers will have to change, and they
are considering radical changes [55]. In the UK and indeed across the EU, the situation is similar, and
CE marking of algorithms and programmed medical devices is currently self-assessed [65], which
means that the team that overlooked bugs in the first place may be the same team that self-assess to
certify the software is safe. This is an unsafe process. Or it is assessed through documentation rather
than analysing source code and specifications. This is a hopelessly obsolete approach, and takes no
advantage of software tools to help automatically verify compliance.

We have explained in previous Gresham lectures why it is impossible to justify high confidence in
any software-based system if your main evidence comes from testing, and we have explained how it is
possible to write software so that you have strong evidence that it is correct, safe and secure [77]. Few
manufacturers of medical devices develop software in this way and no regulators demand that they
do. Until this changes, the risks to patients from cyber vulnerabilities and other defects in medical
devices will remain unnecessarily high.

While cyber-vulnerabilities have captured huge media attention, general software defects are a bigger
problem, not least because they do not attract attention. They cause continual, everyday problems
that are going unnoticed.

2 Computer bugs lead to patient harm

Many healthcare computing projects have failed or have had disappointing outcomes: healthcare com-
puting is widely recognised as a vexing problem [6]. The US National Academies calls it a “healthcare
IT chasm” [68], and Ian Foster says, “healthcare is arguably no longer a medical problem, but a com-
puting problem” (cited in [45]).

We would express the issue differently: healthcare computing is the first time that the rules of health-
care have had to be written down in any form as precisely as computers require, and this new rigour
follows thousands of years of informal heuristics and flexibility being culturally embedded in health-
care. What computers are now doing is clearly showing the incompleteness and unsoundness of the
combination of medical practice — and regulators and politicians imposing complex managerial de-
mands and performance targets on the systems. There are disparate, unstandardised methods across
different specialities. We have an incomplete understanding of disease and patient care, unformalised
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rules of care, clinicians work in different ways in different specialities (and they may invent new pro-
cedures to meet specific patient needs), and programmers poor have a poor grasp of these complex
details and their interactions. The systems they build have to network with (interoperate with) a huge
variety of disparate systems. Previously it did not matter much if radiology and oncology had differ-
ent procedures and even different terminology, but when they both use networked computers, they
have to be the same and understood the same ways — or else confusion ensues. You cannot mislead a
computer and expect it to work reliably!

On top of all that, programmers may introduce bugs.

B Some people differentiate different sorts of bug, a concern beyond the immediate scope of this lecture.
Too often the cliché “it’s just a bug” makes us think they are trivial and nobody’s fault. In fact, bugs are
caused by humans. Behind them there are many types of human error [61], e.g., slips and intentional
errors as well as rush-to-market, overwork, under-resourcing, incompetence, negligence, even hubris
and crime . . . all of which lead to bugs.

A successful company like Amazon, Apple or Facebook can create themselves out of nothing, and
computerise everything they do. And they do it very successfully — creating the impression that
computers make businesses very efficient. But, in contrast, healthcare computing cannot start from
scratch and “do it properly”; it has to make a large messy organisation a bit better. Healthcare has
to cope with politicians and regulators imposing additional rules (such as performance targets, in-
formation governance rules, auditing requirements, security and passwords, and more) on computer
systems, and these are unlikely to be consistent (in the sense a computer requires) with all the details
of what is actually going on. Unfortunately, since computer manufacturers would like us all to be-
lieve that just buying a new computer will solve all our problems, healthcare tends to fill up with new
“solutions” that only create more complexity.

Rather than despair at the scale of the problem, a better approach is to make healthcare computing
safer and more efficient to use. Take the car as an analogy. Although there are many disparate com-
puters inside cars, the driver does not need to worry about them or how they work. The brake pedal
slows the car down. That it does so using ABS and controlling the car’s throttle, even supplemented
by proximity detectors to help avoid collisions automatically, is immaterial to the driver. We have
standardised what brake pedals do and the underlying complexity is hidden. Healthcare computing
is a mess because we have failed to agree, let alone standardise, what we are trying to do, and therefore
“how things work” (or fail to work) is painfully visible at every angle. It is like having lots of different
brake pedals because everybody can think of a nice feature to add, but nobody is willing to simplify
and improve what we already have and make it work seamlessly.

2.1 Healthcare examples

Defects in user interfaces are unwelcome news to both developers and vendors. The EU regulatory
structure ensures that manufacturers are not responsible for use error if their system has CE marks,
and CE marks are a weak standard; similarly, in the US since Riegel v Medtronic 2008, the medical
device companies have immunity from liability for almost every use of a product if the FDA has
approved it. Ironically, vendors claim that regulation (such as it is) inhibits innovation.

We discussed the impact of preventable errors above. In our laboratory, we have been interested in
unnoticed errors, which are errors that occur during use of a computer, but which nobody notices
at the time. Thus they can lead to preventable errors: with unnoticed errors, some more dramatic
consequence, like patient harm, has to occur before anyone realises an error has occurred. Hence
unnoticed errors are not corrected until, sometimes, unfortunately, it is too late . . .

Entering numbers is a very common task in hospitals, for instance to specify drug doses. One way to
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enter numbers is to use a numeric keyboard (i.e., using digits 0123456789 and •, the decimal point);
another common way is to have two buttons like 4 and 5 to adjust the number “up” or “down.” (We
discuss some variations on this basic scheme below.)

In our work [9,10]we have shown that designs with up/down keys lead to about half as many unno-
ticed errors as those with numeric keypad input. This research is significant:

• Where numeric keypads are used, unnecessary patient harms may be caused not by nurses or
other users but by the designs. To put it strongly, about half of the harms caused following use
of numeric keys are caused by poor design.

• Unfortunately, device logs are inadequate to distinguish design error from use error (partly
because of bugs, and partly because they typically record only what the device did, not what
the user actually did or intended).

• Hospital and other procurement should take careful note of research results, and would
thereby be able to reduce harm, improve patient outcomes more generally, and also reduce
consequential litigation costs. Research into safer use of computers can save the NHS (or any
healthcare provider) money.

• It is beyond the scope of these lecture notes, but our research also explains why we get these
improvements. The explanations could be used to drive improvements for many types of
computer system.

• Clearly, more research could deliver further useful insights — funding is needed both for
research and for translating the research into improved care and performance for healthcare as
soon as possible.

In addition to finding differences in how different designs are to use, we have also shown that most
numeric user interfaces have numerous bugs in their software [71]. Many publications, such as [26,
49], show we can formalise relevant user interface properties, check them against regulatory and other
requirements, and hence avoid such design defects almost automatically through using formal method
development tools. In other words, bugs are avoidable, and are generally the symptom of poor design
practices. Interestingly, as up/down keys are simpler they are often more reliably programmed.

Sometimes numbers are entered using four arrow keys, where up/down arrow keys increase and
decrease digits, and additional left/right arrow keys move to which digit to adjust. For instance, to
change 10 into 20, the user would move left, then press up to increase the 1 to get 20. This style of
user interface is very reliable from a user point of view, because it forces the user to closely watch the
display (as the basic up/down design does) and hence be aware whether the number actually entered
is the one they intended. Unfortunately, up/down/left/right is rarely correctly programmed.

On the leading B.Braun Infusomat infusion pump,arrow keys move a cursor and can adjust a digit to
set drug doses. In some cases, a digit not under the cursor is changed, which can lead to number entry
errors with no warning (we found this with software version 686E). This is clearly a bug.

On a Zimed AD syringe driver, the arrow keys “wraparound” and thus a single right-move from
the highlighted 0. 0 cursor position is not blocked but goes “round the back” to the leftmost 0 00.0
position (i.e., the cursor is placed over the hundreds digit). Consider the user trying to enter 0.01
using the natural sequence of keystrokes to move the cursor right from 0. 0 and to increment the
digit (expecting to get 0.01): the sequence will in fact get 1 00.0, which is 10,000 times higher than
expected — and with no warning from the Zimed.

Since wraparound like this is pointless, the risk of this bug can easily be eliminated once identified,
and such improvement in safety can be done systematically [5]. Similar avoidable defects have been
found in almost every computer-based healthcare device we have examined. Don Norman’s classic
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work on programming away use error was published in 1983 [60], and it is astonishing his work and
the research that followed is so widely ignored; unnecessary bugs persist.

Of course, when bugs are demonstrated step-by-step, as above, the bugs often seem trivial — surely
someone would notice a number 10,000 times out from what they expected? No. In a typical pres-
surised clinical situation, everyone has a much more important job to do than debugging software;
these simple problems can easily escalate to serious harm. Contrast the hectic clinical world with
the different world programmers live in: they have years to avoid bugs, they have many tools that
can help them avoid bugs test out and improve systems, and they do not work under life-threatening
distractions. Programmers typically do not think users make mistakes (errors, slips . . . ); in fact,
concentrating on their programming is hard enough without thinking about users. Our culture —
professional clinical bodies and the media in particular — assumes clinicians are perfect; the resulting
mix unfortunately does not often think about error and ways to detect, block or mitigate it.

Our examples above were chosen to be accurate and straightforward to explain; the examples do not
rely on detailed understanding of any clinical context or pathways: they are “just” numbers going
wrong [71]. As well as infusion pumps like those just discussed, hospitals have much more complex
computer systems too: such as order entry systems, MRI scanners and more. These have bugs too,
but are somewhat harder to explain. Schiff [64] studied ten hospital order entry systems, and found
an astonishingly wide range of serious — and unnecessary — problems; their report is unusual for
including screenshots of problems. The Schiff report also includes recommendations, and should be
required reading.

2.2 The case of QRISK

We compared different ways of entering numbers such as drug doses or patient data above (section
2.1); it is an important topic as numbers are central to healthcare — for drug doses, blood pressure,
heart rate, and more. We showed [9, 10] that up/down keys are more reliable for entering numbers,
and interestingly, they are usually implemented without bugs because they are so simple. Up/down
keys just increase or decrease a number, and programming them correctly is easy. In contrast, numeric
keys require more thought to implement correctly, and they are very often implemented incorrectly
[71]. There is, then, a double whammy: numeric keypads are harder to program and have more bugs
and errors using numeric keypads are harder to spot when they are used.

QRISK is a calculator used to work out a patient’s risk of heart attack or stroke. Various versions
of it can be used on the web from qrisk.org; you fill in a form with your age, post code, ethnicity,
smoking habits and so on, and it calculates a risk. The risk is then used to prescribe statins or to help
give you lifestyle advice.

In 2016, the British Medical Journal reported that a bug in QRISK may have led to incorrect prescrib-
ing of statins to thousands of patients [33]. According to journalists, up to 270,000 patients were
affected [27].

We tried QRISK in 2016, and found that its user interface had bugs. It ignored use error, such as
typing several decimal points in a number. Thus, QRISK ignored the error in a user keying in a
number like 200••5. (We have used a font so that the double decimal point is very easy to see. Usually
it is tiny!) Here the user has clearly made an error, and therefore any result is in doubt as would be
is based on invalid data. QRISK should have alerted the user to the error so it could be corrected —
we know from our experiments that users are unlikely to spot this error themselves. This is a simple
bug in QRISK; it failed to validate user input — though calling it a “simple” bug does not mean that
its consequences are simple, rather it means the bug should have been simple and indeed standard
practice to avoid.
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Fortunately the 2018 version of QRISK has been updated (perhaps because developers were aware of
our 2017 paper’s criticisms [71]), and it now warns the user if there is a decimal point error and other
similar data errors. The current version does not produce any result that might mislead the user due
to data errors (so far as we can see).

However, QRISK still has user interface bugs: using the current 2018 version (QRISK®2-2017), if you
press RESET, your estimated risk of heart attack or stroke in the next ten years is reported as 12.3%.
Yet this is a risk calculated on no data! In particular, if you had entered correct data but accidentally
pressed RESET, QRISK will not warn you the prediction is wrong and based on a cleared form.

Interestingly, when the form is RESET, the data is not replaced with nothing (which QRISK might
have spotted) but it is replaced with valid data — it is filled in for a 64 year old, white, non-diabetic,
non-smoker, . . . As we pointed out in our paper [71], user interfaces can (and in this case, should)
distinguish between real data (like the ethnicity being white) and no data (like the user not have
specified any ethnicity). QRISK does not do this, and therefore it cannot tell the user if they forget or
omit to specify an important parameter; and since RESET always sets some data, QRISK cannot tell
the difference between the user missed setting data, which would be an error, rather than choosing
the default which is not an error. Perhaps worse, if QRISK is used by a GP to assess several successive
patients, perhaps one patient’s data gets accidentally used for the next patient.

In fact, the original problem reported in 2016 was not caused by a user interface bug: QRISK takes 15
patient parameters, and when these were filled in automatically from patient data, the data was mixed
up [58] (apparently by a third party), so QRISK’s calculations were based on incorrect data.

QRISK publishes its algorithm in open source form. The algorithm’s parameter names are

age, bAF, bra, brenal, btreatedhyp, btype1, btype2, bmi, ethrisk, fhcvd,
rati, sbp, smokecat, surv, town

These are not mnemonic and are not documented in any way, which professional programmers would
consider a bug in itself. The algorithm does no data validation whatsoever, so an unnoticed mix up is
perhaps unsurprising. Fortunately, when the bug came to light it was possible to compare risk factors
based on correct and incorrect data, and hence warn all GPs who had patients with a significantly
changed risk score.

Finally, it is interesting that QRISK has been validated, published in a peer-reviewed paper in the clin-
ical literature [29], but the validation did not look at how QRISK was used; it was a purely numerical
validation, assuming all the data to QRISK was correct. Thus the clinical paper, in overlooking to
validate clinical use of the algorithm, overlooked critical bugs.

As we say elsewhere here, we are using QRISK as an example you can check. There is nothing unusual
about QRISK; its problems are common across many hospital computing systems. Since the QRISK
system we reviewed above is accessed on the web, it is likely that it will quickly be updated and perhaps
these bugs will be fixed. That is a positive side of using computers: if the developers want to improve
things, they can quite easily.

2.3 Less obvious bugs

The common view of a bug is that the computer or program suddenly stops working; it crashes.
More often poor design causes frustration, inefficiency and even cover-ups. Examples from healthcare
include:

Lack of interoperability. Computer systems are developed independently and do not work
together. Patient data cannot be transferred from one system to another.
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Over-zealous and inappropriate security. Clinicians have to enter multiple passwords to use
computers. Their work is considerably slowed down by such non-clinical workload.

Workarounds. Computer systems impose constraints on what clinicians can do (or what they can
report they are doing), so clinicians effectively lie to the computers just to get things done.

Lack of validation. Users may, for all sorts of reasons, make errors entering data but a
well-designed computer system will validate their data. If a user enters a number without the
decimal point, the drug dose may be ten or a hundred times too high, but as there are
generally recommended drug doses, this error can be trapped and the user warned, and either
forbidden from entering such an extreme value (hard validation), or asked to confirm that is
really what they require (soft validation). It is very hard to design good validation:
programmers make mistakes just as users do, so they may overlook opportunities for
validation, and their validation (if done) may itself be buggy; and what seems like useful
validation to a programmer may be ineffective for the user.

For example, Mersey Burns, which is an award-winning medical app, will soft warn the user
that an entered weight of 4,880 kg is high for a newborn, but if the user thinks they entered
4.880 kg, the warning will most likely be lost on them — and if the user tries twice to “make
sure,” the validation warning does not repeat! Worse, over-zealous validation may force users
to try workarounds — one real example was a nurse who changed the patient weight in order
to deliver a correct drug dose (checked against the weight), but then forgot to correct the
weight afterwards.

Ambiguity. Drug names may be too long to display in full, and may be misread. Patient records
may be too long to fit on one screen, so a clinician may be unaware of further text (drug
allergies?) on subsequent pages.

Obfuscation. User interfaces may “work” but they may be unnecessarily complicated, or
complicated in unknown or unexpected ways. This will cause problems for staff and patients
that typically manufacturers will deny are their fault.

Configuration errors. Computers may work, but hospitals may configure them and make
mistakes in their configuration. A common example is setting up drug libraries (which
provide critical information on drugs used in each hospital): mistakes here — bugs — are not
in the software but in the local data. Another example is for third parties (e.g., service
engineers) to reconfigure a system and cause problems — this is equivalent to an internal
cybersecurity breach.

Big bang. It is very hard to gradually install a new system, so most computer systems are installed
with a “big bang.” One day, everything is new and different (and nobody knows how to use
it) — it will likely have teething problems, that is, bugs that were not anticipated.

2.4 Invisible and denied bugs

Hospitals do not know what bugs their systems have. The economic consequence is that suppliers
sell features — i.e., benefits that are obvious — rather than dependability or safety, since nobody
knows how to measure that reliably. Curiously, we know how to measure the cost of patient harm
and litigation, but we have no idea how to measure the benefits of computers, let alone whether the
benefits offset the costs! Not only do we have little idea how to assess (or regulate) the quality of
hospital computers; we have no idea how to quantify the relation between computers, their quality
and patient outcomes, so it is not obvious how to improve.
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In contrast to hospital computer systems, many goods, such as electrical items and pharmaceuticals
are regulated so that they have to be appropriately safe. Yet the marketing story presented to health-
care is that computers are fantastic. So, if we believe the hype, when a problem occurs — as one
eventually will — the cause can only be the users, generally the front-line clinicians. This impec-
cable logic is also backed up by our legal culture: many systems are provided on contractual terms
that hold the manufacturers harmless from liability, yet the law also indicates that computers are re-
liable [51, 53]. Many systems contractually claim that clinical judgement is the final responsibility
— despite the obvious fact that many computers are used because they perform clinical judgements
(calculators would be a very simple example — they are used because they tell the professional what
to do). In the EU, medical device regulation essentially specifies that if a device has a CE mark, and
did not malfunction (and if it did, that is probably claimed as a hospital maintenance problem), then
the manufacturer is protected.

When the Princess of Wales Hospital identified some problems with nursing, it resulted in over 70
nurses being disciplined and five indicted in court. This, of course, was at a tremendous cost to
the hospital, as well as to patients and to the hospital’s public image. Some nurses pleaded guilty
and had custodial sentences. However, some nurses pleaded not guilty, and we were involved in
the court case as expert witnesses, and hence had access to the relevant data and statements from
the manufacturers. The manufacturer’s opening evidence said that the systems were CE marked, and
therefore any problems were the nurses’ fault. The case has been described in [74], summarised in the
legal reference book Electronic Evidence [52], and the judge has published his final ruling [11], which
led to the collapse of the court case. In summary, the computer data was corrupt but nobody had
noticed. Instead, the police had pursued confidently blaming many nurses for the problems.

In hindsight, it hardly seems insightful to point out that 70 corrupt nurses is far less plausible than a
single corrupt database. Computers fail all the time, as the prosecution admitted in court. Nurses very
rarely “fail,” and when they seem to it is more likely because they are working in onerous conditions
with unreliable computer systems.

It is sobering to wonder what other hospital data may be corrupt (whether from bugs, inadequate
data management, or cyberattacks, etc) but is being misdiagnosed. The answer is we simply do not
know. And blaming nurses is a recipe for not finding out.

2.5 Everyday examples

The problems we listed above were chosen because they were easy to explain, and they may therefore
seem easy to dismiss because “obviously” clinicians should not be so unprofessional as to make the
“simple” errors we discussed. This response ignores the complexity and pressures clinicians work
under: errors of the sort we showed are routine to make because of the highly-pressurised clinical
environment.

The response also comes out of a misunderstanding of human error. We don’t think we make many
if any errors, so other people making errors must be incompetent. The truth is, we do make errors
— we make errors all the time that we do not notice. If we noticed our errors, of course we would
not make them! Add up ten numbers with a calculator, then do it again in the reverse order — you
will often get different answers. But each time you added up the numbers you did not know you had
made an error, until you made the final comparison. In other words, we make errors more often than
we think — and so do other people. The “unlikely” errors we discussed above are far more likely than
we think.

Another natural response might be that the problems should be mitigated by proper staff training.
Clinicians are supposed to be professionals after all. Unfortunately, nobody notices the problems we
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are discussing here, so training to avoid problems is unavailable. More practically, there are thousands
of clinicians (the NHS is the UK’s largest employer) and a training programme for them would not
be able to keep up with technical innovation.

Rather, we should see the problems as symptoms of a worrying underlying new disease of epidemic
proportions. And once we recognise the symptoms of this disease, poor programming becomes vis-
ible everywhere. If we avoided the bugs through better software engineering and regulation, then
everything would be safer.

The Apple iPhone calculator is a very simple computer program, and will be easily available to many.
In Version 11.2.5 (the current version as of January 2018) of the Apple operating system, pressing AC
± (swipe)3 ± in the Apple calculator will result in Error being displayed, meaning that something
unexpected has happened. That is, the Apple programmers have detected an error in their program
code, where the program cannot handle this sequence of user input. It is a bug. This particular bug
fortunately says Error but it is a silent warning and the user may continue to enter a number, and then
they will get the wrong result, unaware that an error occurred part way through their calculation. It
is easy to create examples where the final answer is wrong, but Error is not displayed. Such examples
may seem contrived, but they should not happen at all. (Technically, what we showed above is a
MWE, a minimum working example — if we showed more a realistic example, the nature of the bug
would be harder to see so clearly.)

But the example raises the serious question: how much else is badly implemented in the calculator?
The fact that such simple examples are programmed incorrectly suggests that there is a quality control
problem that may affect any calculation. Consider how many iPhones have been sold and are in use:
even though the probability of a bug affecting a user may be quite low, the number of users times the
probability is worryingly large. Apple are by no means unique: almost every calculator has similar
peculiar bugs that can catch users out [70].

B The next few paragraphs illustrate that discussing bugs in enough detail to understand them is, frankly,
tedious, even though people can get killed by them. Tracking down, diagnosing and fixing bugs is not
exciting. If you were a nurse, every day you would have to work through many calculations like those
in the example below, and as in the case study, you would face the unnecessary risks of poor
programming in the systems you use.

Consider a realistic healthcare calculation, which illustrates how use errors are exacerbated by bugs.
The pharmacy gives a nurse a drug bag, which is labelled that it has 130 mL of drug at a concentration
of 45.57 mg/mL, and that the patient should be dosed at 5250 mg over 4 days. The nurse will work
out the rate to set the infusion pump to, to deliver the drug at the right rate to the patient. This isn’t
particularly easy, and one wonders why the hospital pharmacy computers did not do the calculation
to save the nurse doing it: they could have made this part of the nurse’s job easy — and reliable.
Instead, the nurse has to do the calculation 5250/45.57, which gives a dose in millilitres per day. But
the infusion pump must be set in millilitres per hour, so this needs dividing by 24 hours in a day. Put
in the language of a calculator: the nurse must press AC 5250÷4÷45•45÷24 =, and the result should
be 1.2 mL per hour.

Two nurses working in a team performed this calculation. Unfortunately both worked out an answer
24 times too high, and they therefore agreed on it, but the high dose was fatal [73].

We do not know exactly how the error occurred. Perhaps one nurse forgot the 24, and the other
missed out the last / in the calculation (or typed • or something else instead of it) — most calculators
allow a user to miss out a divisor and divide by 1 instead of reporting an error. If so, the nurses would
have got 28.8779 and 28.8764, respectively, which are the same to 4 figures. Or they may coinciden-

3Swiping your finger across the display will normally delete a digit (or decimal point) from the display. It is a useful
way to correct errors.
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tally have made exactly the same errors and got exactly the same answers? For systems (calculators,
infusion pumps) in a hospital, to ignore and unhelpfully disguise a use error is a bug.

We have designed a drug dose calculator that detects and blocks these errors [69], though it would be
even better built into the infusion pump (and other devices) to avoid the final error-prone step of the
nurse copying a number from the calculator’s display to the infusion pump’s buttons. Perhaps the
pharmacy or the drug bag itself should program the infusion pump directly?

In another tragic example, again where too few details are known (why don’t devices keep proper
logs?), the nurse, after making a calculation error of some sort, committed suicide [63, 84].

Why do nurses have to do what computers are — or could easily be — best at? If calculator manu-
facturers with all their computing and programmings skill cannot get basic things right, it is unlikely
that medical device manufacturers will be better.

2.6 Confidentiality and “cargo cult” research doesn’t help

We have mentioned bugs in specific systems with care, which are either well-documented or can be
reproduced by the readers as we describe them; almost any systems could have been chosen for our
examples. We selected our examples above because they are simple enough to explain clearly in these
brief lecture notes, and because they are representative of widespread problems (though we do not
pretend these lecture notes are a systematic review; indeed one systematic review concludes, as we
do, that there is a paucity of reliable research [16].

There is in fact no shortage of more complex examples, such as serious problems with radiotherapy
systems. We mentioned the 1985–1987 problems with the Therac 25 earlier (see section 1.3), and
then over the period 2000–2001, the radiotherapist Olivia Saldaña González treated patients who
were overdosed and died. She became a martyr to the cause: imprisoned for manslaughter caused by
bugs [4, 47]. Many other examples are discussed in [64, 73].

We named our examples. We are worried by the alternative approach where products are anonymised,
which limits what people can learn, and seriously limits manufacturers’ and hospitals’ ability to im-
prove safety.

The paper [31] (which is by no means unique, but we cite it by way of giving a concrete example;
we also cited it on page 5) compares two hospital systems (specifically EHRs, electronic health record
systems), called in the paper EHR1 and EHR2. One is three times worse than the other, at least for the
experimental task it was evaluated with. Surely it is not only normal scientific practice but imperative
to know the identities of the systems?

• We don’t know what systems were tested;

• the research does not help the manufacturers improve their products;

• the research does not help future science replicate or extend it — in this case, this is critical
because the paper does not clearly address why there were differences in safety;

• errors in the research, if any, cannot be corrected as nobody can check or replicate it — no
data is available (not even the experimental task);

• the research does not help anyone who wants to buy safer systems;

• the research does not help patients who want safer treatment or staff who want to work in
safer hospitals;

• do we want patients just to worry they are being treated with the worse system?
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In short (apart from gaining a publication for the authors) the paper fails to empower anyone — and
preventable bugs in hospital computer systems will remain despite it. Within the confidential culture
of healthcare computing (discussed below), such papers may be the best we can do, but they are,
nevertheless, examples of so-called cargo cult research: they look like research, but fail the accepted
tests of good science [21].

3 Pathways to improvement

We have shown there are ubiquitous problems, and that there are likely adverse consequences that
could be avoided. For example, we use calculators because we do not know the answers, so there
ought to be an obligation to make them reliable. Why aren’t computers more reliable, especially in
healthcare?

• It is politically expedient that newer IT will solve problems automatically: hospitals do not
have the latest IT, and it is more profitable to market “new technology” rather than to solve
the underlying problems.

• Everybody thinks programming is easy (and calculators — an example above — are trivial as
things go), so no adequately professional effort goes into their design.

• It is easier to blame users for error than to blame designs (which are protected in law), and
errors occur because users are unaware of them. Error is hard to replicate and users involved
in error often want to conceal it. In contrast, cancer, say, is not the hospital’s nor clinician’s
fault and there are recognised approaches to understand it. Solutions to cancer will doubtless
make money for industry, but solutions to preventable harm will save money for the NHS.

• There is understandable resistance from industry to undertake research that may lead to
improved safety standards, a more cautious purchasing regime, or any increase in the so-called
“regulatory burden.”

• Koppel et al [40] exposes the standard confidentiality and “hold harmless” legal arrangements
that stifle research, and in particular, reproducible research — there are studies of systems A
and B , but if we don’t know what they are (for “legal reasons”) then nothing can be learned,
other than that there is variation in quality of systems. We gave a recent example in section
2.6, above.

When it seems that a clinician has made a mistake, why don’t we first ask: did a bug contribute to that
outcome? It probably did. (Big bugs like crashes may be obvious, but there are also hard-to-see bugs,
when a program to fails to work correctly but sort-of works.) Section 2.4 discussed a case where over
70 nurses were disciplined and some indicted and prosecuted in court for making errors we showed
were actually caused by bugs (and mismanagement) that had been overlooked [74].

3.1 14 suggestions

We ought to improve safety. Here are a few suggestions:

1. If it is impossible to tell whether or not a computer contributed to an error, presume it did for
legal purposes. (The current presumption in UK law is that computers are
reliable [50, 52, 53].) If we required this, very soon manufacturers would put effective black
boxes into their products. Moreover, the black boxes should use open standards — currently,
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only the manufacturer can fully interpret data yet there is a conflict of interest because they
bear liability if it turns out the data implies their product failed [24].

2. Every device and system must be safety tested and rated. The ratings could then be used to
label the devices, like we currently label white goods (like fridges) for energy efficiency as it
encourages people to buy more efficient white goods, which in turn drives manufacturers to
make them more efficient. Likewise, we should be driving manufacturers to make safer
medical systems [75].

3. Design problems should be avoided or fixed as early as possible in the design cycle, before
testing. Aviation software is developed to a higher standard than healthcare software. One
aviation standard is DO-178C [62], showing that tighter standards are no obstacle to
manufacturers. DO-178C could be adopted directly into healthcare, though to do so would
need a transitional strategy, as what is routine in aviation (because people’s lives depend on
safe software!) is currently an insurmountably high hurdle for healthcare. But DO-178C
shows it can be done; of course, a derivative standard might be developed to more closely
align with clinical needs (e.g., including information governance). Other relevant standards
include IEC 61508, 62304, ISO 15026, 14971, 9241, etc — there is no shortage of ways to
improve, and we think DO-178C is just a start [78].

4. It seems self-evident to us that if clinicians have to be qualified and regulated before they can
treat patients, then software engineers who develop and build safety-critical clinical systems
should be qualified to at least comparable levels of competence, and so should the technicians
who maintain these systems. Currently it takes about 8 years to qualify as an anæsthetist and
it is a very responsible job, but you can start programming an infusion pump or patient
record system this afternoon and have no relevant qualifications whatsoever. We note the
recent founding of the Faculty of Clinical Informatics [19] and this, we hope, will help change
the culture and support best practice.

5. Due to industrial pressure and consumer (also procurement) eagerness products are released as
if they are finished products (sometimes they are released before they work). This is
exacerbated because typical procurement contracts emphasise delivery rather than levels of
performance. The ISO standard 9241 [35] shows that products must be iteratively designed:
after delivery, they should be evaluated and continually improved. Many bugs and design
defects will only become apparent after a system is used for real — hospitals are complex
places, and many procedures are complex and probably not fully understood either by
designers or procurement. A mismatch is inevitable. How does the manufacturer act on
“post-market surveillance” and do they collect use data and user feedback? ISO 9241 provides
a framework for improvement. Arguably, if ISO 9241 is not in procurement contracts, they
are inadequate.

6. “Ordinary” consumer and office products like calculators and clinicians’ own phones (and the
software running on them) must be regulated if they are to be used in healthcare. Under
current European legislation, they do not need regulation for use in healthcare.

7. So-called “hold harmless” and other warranty limitations for software must be banned [40].
Confidentiality is a standard clause, which further limits awareness of any problems. What
incentive is there for making bug-free software if the manufacturers can deny liability for
problems? Indeed, some software forces that the user agrees to indemnify the developers. For
example, the Mersey Burns EULA (end user licence agreement) states that the developers are
not liable for any damages, and furthermore that users indemnify the developers for any
liability — this is not unusual. This is backwards and would be unacceptable for other
products.
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8. It is possible that fixing a safety vulnerability could be taken as an admission of prior liability.
Laws need changing to encourage improvement, not to disincentivise it.

9. Designing, developing, procuring and monitoring safe systems is complex and error-prone. At
all stages, oversight should be required [66]; explicit safety ratings (based on rigorous
evaluations, perhaps similar to safety ratings on other safety-critical products such as car tyres)
would also help [73].

10. The regulatory process is very slow and ponderous, but technology is advancing much faster.
This can create tensions and design compromises. Thus, oxygen is regulated as a
pharmaceutical, but a computer regulating the flow of oxygen is regulated as a medical device;
yet the two may be combined into a single, integrated computer-controlled oxygen cylinder.
Pharmaceutical regulations (in the UK) forbid instructions or warnings for the integrated
medical device controlling the oxygen to be placed on the cylinder — even though they are
physically inseparable. Another example is that information governance was established in
the 1960s, so a hospital can fax a patient (but does the right person get it?) — but they are
typically forbidden from using WhatsApp or Skype, even though these are more secure and
reliable ways of communicating. Therefore there must be a more balanced and more efficient
way for technical innovation to inspire and nudge improved regulation, as well as regulation,
in turn, to manage and reduce risk in innovation.

11. Leaders, thought leaders, and procurement need more training and awareness of the true
capabilities and risks of computers, and of the processes that should be used in mature
software engineering. Currently industry, understandably, wants to promote embracing new
technology but this must be balanced against the evidence for the effectiveness of planned
interventions. Healthcare needs a lot of wisdom to distinguish between the excitement of
consuming new technology (which is valid for personal consumption) versus the real
excitement of solving healthcare problems (which requires products to work reliably in
complex healthcare environments) [72, 76]. Seeing computers as a medical intervention that
should be subject to the same “evidenced based” core of healthcare thinking would be an
improvement (and indeed would stimulate more, and more rigorous, research).

12. A deep cultural problem that needs to be addressed is that the clinical literature (e.g., on burn
treatment) was never designed to help specify reliable software for clinical use. A very simple
example is the clinical literature on body mass index does not specify that patients have a
positive weight (they must weigh more than zero); a programmer implementing what the
literature says will end up with software that will ignore use error such as entering a zero
weight or perhaps not filling in a weight at all. Another example was given in our discussion
of QRISK validation in section 2.2.

13. Cybersecurity research has exemption from confidentiality laws, such as commercial
confidentiality law, otherwise inhibiting research [2]; it would be very easy to make safety
another exemption.

14. Crucially, we need more research, and more quality, independent research. Although stories
and examples are persuasive, we need rigorous science to discover the underlying principles of
improvement that can help improve everything, and to get good evidence to prioritise
action [7], political, regulatory and at the point of care.

This list is not exhaustive, but shows that a variety of approaches are feasible, many of which have
been successfully tried-and-tested in other industries. Each idea, even in isolation, will help improve
safety.

Legal, clinical, hospital and media culture is another matter. Thankfully, if we improve software
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design and programming, safety will improve regardless of healthcare culture. There are fewer devel-
opers to convert to a safety culture than clinicians, hospital managers and politicians; arguably, then,
technical improvements — which aviation has path-broken — are the best way to start.

Note that the aviation standard DO-178C was developed by a volunteer organisation (the Radio Tech-
nical Commission for Aeronautics), so clearly developing standards need not wait for statutory sanc-
tion. And, of course, current healthcare software standards are widely recognised as being out of
date (e.g., balancing technically-obsolete data protection adherence while permitting realistic, often
innovative, clinical use of mashed up apps and servers in unspecified jurisdictions . . . ), so they need
updating anyway.

Adopting the ideas above certainly demands a change in perspective for developers. Hopefully, some
will want to stand out as leading safety culture. And once culture change starts, it will stimulate more
ideas beyond our initial list above.

3.2 Recognising there is a problem

The first step in solving a problem is to recognise there is a problem — and then to diagnose and treat it
correctly. Even with serendipitous ideas, such as the discovery of penicillin, they are only recognised
because they solve a known problem (in penicillin’s case, of bacterial infection). In the case of bugs in
hospital computers, few recognise there is a problem, therefore even fewer are researching the scope
and reach of the issues, let alone the solutions.

The NHS does have many problems, and it is easy to jump to the conclusion that computers are
the obvious solution to them, rather than first researching the actual benefits of computers for those
problems. It is easy to confuse “new and exciting” for good [38, 73]. But when thinking about the
NHS and new technology, we need to focus on actual effectiveness in supporting the NHS, its staff
and patients — we need to do better than follow intuition.

The Times recently reported tragic cases of people dying after NHS postal paper mixups, and their
article shows that to many it seems obvious that the NHS should use email more [43], to replace the
old technology of paper with the new of email. Unfortunately, email itself doesn’t cure the problems.
The problems were due to human error, not to paper.

Email, in fact, often makes error worse and harder to see. Have you ever sent an email to the wrong
person? Have you “replied to all” by mistake? In 2016, the NHS had to use, ironically, a recorded
voice message after an email accidentally sent to 1.2 million people ground things to a halt — not least
because some “replied all” to everyone causing an avalanche of emails. More recently, over two days
(24–25 January 2018) NHS computer systems failed across Wales, with hospitals and GPs unable to
access any information [30]; this nation-wide IT failure came at a time when the NHS was already
facing unprecedented loads from staff shortages and winter flu.

More reliable systems could be developed to help detect, block and mitigate human error (face to
face video helps; patients in charge of their records may help, AI can help). But until then, and
when software has fewer bugs and failings in its design, email is just a faster way of doing everything,
including making mistakes.

The conventional solutions involve buying more computers, because new computers are exciting and
seem to offer huge transformational potential for healthcare; the UK Wachter Report [82] is a case in
point expressing this view. Of course, there is a lot of commercial pressure driving the conventional
solutions. The Engineering and Physical Sciences Research Council (EPSRC), which would seem
to be the natural UK funder for the needed research, has a “healthcare technologies programme”
[17], but it does not recognise the role for improving computing technology or the need for software
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engineering to be more reliable in delivering healthcare (or even in supporting more reliable research).
The oversight is an international problem. One example is the only recent discovery of a 15 year old
bug, the impact of which undermines thousands of papers and years of brain research [15]. The
problem took so long to discover because nobody thought computer bugs were an issue.

At the most general level, when we recognise there is uncertainty or controversy in a critical area (such
as healthcare), then strategic research to reduce that uncertainty is called for. Politicians and managers,
for instance, cannot make sensible plans about future computing in healthcare when even the broad
impact of their decisions is unknown — past examples such as the UK National Programme for IT (a
£11.4 billion programme scrapped in 2011) and very recent examples such as the IHealth Electronic
Health Record System [8,18] give little reason for confidence in hope over science, let alone hope that
we may have learned anything useful from past failures in healthcare computing projects. Consider
that the Government predicted savings of £1.2 billion for “telehealth,” but subsequent studies showed
no real benefits, just increased cost [54].

Why is there this repeated hope in new solutions, when it seems to us that there are more fundamental
problems that no new technology overcomes, however exciting. Where, given the history of disap-
pointing results, is the unbiased research? What sort of solutions might be proposed and evaluated as
priorities? We explore these questions in our conclusions, next.

4 Conclusions

Most people know very little about programming, though they know that children can do it, so it
must be very easy. Because most people — including those in healthcare — know little about pro-
gramming it is very hard for them to recruit good programmers or to select quality suppliers; indeed,
many medical device manufacturers cannot program themselves so they out-source all software de-
velopment.

Most design consultancies and developers think they are good programmers. It is in fact very easy to
write programs that look like they work. The errors we discussed above affecting B.Braun, Zimed
and Apple software are cases in point. Similarly, it is easy for a cowboy builder to make things look
like safe houses, but they conceal structural, electrical, and fire risks that are very hard to spot — until
things go wrong. (It is easy for children to build houses in Lego . . . but it doesn’t mean they are or
are even going to be competent structural engineers.)

With our culture’s unawareness of the hard skills needed for dependable programming, combined
with many programmers’ hubris, exacerbated by industry’s continual pressure for healthcare to just
buy solutions, it is going to be hard to get any of our suggestions above implemented.

WannaCry didn’t make many say healthcare computer systems should improve — the emphasis was
mainly on the NHS’s responsibility to keep cyber-defences up to date. The costly suspension of over
70 nurses because of a computer error didn’t make many say programming should improve. The
deaths of patients and the imprisonment of Olivia Saldaña González didn’t prompt many to say that
programming quality or regulation should improve.

Research into safer use of computers will improve the quality of healthcare, save lives, and save unnec-
essary harms and the costs of litigation. It would save the NHS and all healthcare providers money
and would improve the health of society — it is an international problem and solutions will have an
international impact. In comparison, conventional clinical research is expensive and, when success-
ful, generally results in drugs or devices that cost further money and only helps patients with specific
diseases. Improving computers to avoid the bugs (and the regulatory and procurement cultures that
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Cancer research Computers in hospitals research
Expensive drug development and trials Cheap program proving and evaluation

Expensive treatment with drug Negligible cost to benefit
Usually targets specific cancers Benefits all patients

Benefits staff
Usually has side-effects No side effects

Reduces negligence claims
May be complex to use Improved usability

Usually patented Improvements can be used by all manufacturers
Significant funding Negligble funding

An outline comparison of cancer research (to take one clinical example) and research into computer bugs.

acquiesce to them) as we discussed throughout this lecture will save money and help everybody, both
patients and staff, regardless of disease.

Consider three well-known accidents from outside of healthcare:

• The 1988 Piper Alpha disaster killed 167 people and led to a Public Inquiry [12], and to
radical changes to the way safety is managed on off-shore oil platforms.

• The 1999 Ladbroke Grove train crash in London killed 31 people, and remains one of the
worst rail accidents in Britain. A public inquiry into the crash was held in 2000 [13].
Interestingly, the crash would have been prevented by an automatic train protection (ATP)
system — a computer system to prevent error — but it had previously been rejected because of
cost.

• The 2017 Grenfell Tower fire tragedy killed 71 people and led to a Public Inquiry [80], as well
as to a review [79] with plans for radical changes in the way that fire safety is regulated in high
rise buildings.

These were major tragedies. It is right that they are leading to radical changes to reduce future
risks.

For healthcare, the National Reporting and Learning System (NLRS) says there are about two mil-
lion reported incidents per year in England and, of those, about 10,000 lead to serious harm or death
(see page 2). If only 2% of that 10,000 (that is, 200) is computer-related, then each and every year
computer-related serious harm or death exceeds the fatalities from major accidents like the Piper Al-
pha, Paddington, and Grenfell tragedies. (We think the 10,000 estimate from NLRS and the 2% guess
for the computer-related rate are both likely to be too low; together they are far too low.)

Piper Alpha, Paddington, and Grenfell capture the imagination not just because they were tragically
preventable but because they were visible. We hope that our lecture exposes and makes clearly visible
the far greater damage done every year by invisible (and denied) bugs in hospital computer systems,
and why this hidden carnage need not continue.

What will it take before we get our Public Inquiry? When will we have the “radical changes” in
healthcare regulations?

What will it take to prompt the needed funding for research to understand and solve the problems,
and to overcome the current Catch 22 that “there is no reliable data to prove healthcare IT research
is needed” — an excuse long familiar from the resistance to researching the facts of smoking.
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Notes and further reading

This lecture has reviewed computer bugs in healthcare and their impact — and noted the lack of
research, whether to be certain of the scale of the problem, or to seek solutions. We recommend the
following resources — we are not the only people with these concerns:

• Fu’s Archimedes Center for Medical Device Security web site [22] has many resources on
cybersecurity issues in medical devices and systems.

• The Royal Academy of Engineering is producing an authoritative report, Cyber safety and
resilience: strengthening the digital systems that support the modern economy, which should be
published in 2018.

• Koppel and Gordon’s book, First, Do Less Harm: Confronting the Inconvenient Problems of
Patient Safety [39] is an edited, multi-author book with further resources on computers and
their impact on patient care.

We want our lecture to inform and empower you, and we hope we have done both. We will look
forward to hearing from you what you do.

The authors are grateful for very helpful comments from Carolyn Greig, Kevin Fu, Stephen Mason
and Ross Koppel.

Harold Thimbleby is very grateful for support from See Change (M&RA-P), Scotland.
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