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Introduction 
 
Can Maths really save your life? Of course it can! Maths has applications to many problems that are vital to 
human health and happiness, ranging from curing cancer to powering our mobile phones. In this talk we are 
going to describe on particularly important application of mathematics to saving lives, namely its applications to 
imaging, medical and otherwise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modern medicine relies heavily on imaging methods which aim to find out what is wrong with you, without 
cutting you open first. The first such images used X-rays, going back to the discovery of them by Wilhelm 
Roentgen in 1895.  By the start of the 20th Century. X-rays were being used in a variety of medical applications, 
and Marie Curie drove an X-ray ambulance during the First World War. Whilst X-rays were an important 
breakthrough, they only gave a limited view of the inside of a body. Essentially they showed you a shadow of 
the bones, and had limited information about soft tissue. In contrast, modern imaging methods do much better. 
Now only do they show a three dimensional reconstruction of the inside of the body, but they can also resolve 
soft tissue, such as brain matter. Advanced FMRI methods can even see what you are thinking. 
 
Essentially these imaging methods take two forms. X-ray and ultrasound methods use a source of radiation that 
lies outside the body. The radiation is detected after it has passed through the body, and an image constructed 
from the way it has been absorbed. When X-rays are used, this process is called computerised axial tomography or 
CAT for short. Above we see a CAT scan of a head. (The word tomography comes from the Greek work tomos 
meaning "cut" or "slice".) This lecture will look at this, and other imaging processes in detail.   
 
Other imaging methods use a source inside the body. These include magnetic resonance imaging (MRI and FMRI), 
positron emission tomography (PET), single photon emission computed tomography (SPECT), and EEG/MEG These 
methods have certain advantages over CAT, both in image resolution and in safety, as X-rays can easily damage 
soft tissue. The basic mathematics behind tomography was worked out by the mathematician Johann Radon in 
1917. Much later, in the 1960s Allan McLeod Cormack, working in collaboration with Godfrey Newbold 
Hounsfield, developed the first practical scanning device, the celebrated EMI scanner. For this work, Cormack 

http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Biographies/Radon.html
http://en.wikipedia.org/wiki/Allan_McLeod_Cormack
http://en.wikipedia.org/wiki/Godfrey_Hounsfield
http://en.wikipedia.org/wiki/Godfrey_Hounsfield
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won the Noble Prize. Early models could only scan an object the size of a human head, but whole body 
scanners followed shortly after. 
 
Medical imaging works through of a combination of very careful measurement techniques, sophisticated 
computer algorithms, and powerful mathematics. It is the mathematics that we will describe here. We will also 
show that the same mathematics has many other applications which help to save lives. These including imaging 
the atmosphere and improving the safety of air travel, detecting land-mines, locating oil, curing cancer, saving 
the whales, and slightly more frivolously, solving Sudoku puzzles.  
 
Whilst being a very powerful application of mathematics, that saves countless lives, it is worth noting that the 
original work was done as an exercise in pure mathematics and it took over 50 years for it to become practical. 
We can speculate how many other areas of pure mathematics will have such a profound impact on people’s lives 
in fifty more years. 
 
Inverse Problems 
 
Medical imaging is an example of what is called an inverse problem. Mathematicians distinguish between two types 
of problems, forward problems and inverse problems. In a forward problem you have all the information about 
a system and then try to predict what it will do next. A good example of this is dropping a ball onto the ground. 
Once you release the ball, by applying Newton’s theory of gravity, you can predict (almost) exactly when it will 
hit the ground and when it will come to rest. An inverse problem is much harder to solve. In these types of 
problems you look at the evidence and try to work out what caused that evidence. For our ball problem this will 
amount to coming into a room, observing a ball on the ground, and then trying to deduce when it was dropped. 
The information is all there (in the vibrations of the floor, of the air, of the ball etc.) but it is much harder to use 
this to find out what has happened.  Inverse problems are very common. In fact your brain has to solve an 
inverse problem in order to be able to make sense of what you are seeing as you read this transcript, or what you 
are hearing when you listen to a lecture. Forensic scientists have to solve an inverse problem when they examine 
a crime scene. For example working out where a bullet might have come from and what sort of gun fired it. 
Another example of an inverse problem is seismic prospecting for undersea oil, in which an explosion is set off 
at the surface of the sea and the location of the oil is deduced from measurements of the echoes of the 
compression waves from this explosion as they rebound from the rock underneath the ocean bed.  
 
There are a number of reasons why solving inverse problems are hard. One is that information (such as in the 
example of the bouncing ball) can be lost rapidly, distorted or confused with noise as time increases. This means 
that it can be hard to measure and to deduce what is happening. Another is that very different causes can lead to 
very similar measurements. As an example, a cylinder and a rectangular block can both cast a square shadow 
when held at the right angle to a light source. It is then impossible from just examining the shadow to work out 
which shape you are looking at. This has enormous practical consequences. For example in medical imaging a 
doctor has to know for certain that what they are looking at is a true image of the patient and not an artefact of 
the imaging process in which a perfectly plausible solution has constructed which fits the data but is far from the 
actual reality. Mathematicians call problems of this form ill-posed. They are traditionally very hard to solve. 
Indeed it has been said that solving an inverse problems is like trying to work out the precise notes of a piece of 
piano music, when all you can hear is the music wearing ear muffs, through a thick concrete wall, and played by 
a musician wearing boxing gloves. However, the reliable solution of inverse problems is vital for medical 
imaging, radar, remote sensing, forensic science, archaeology, geography, weather forecasting, robotics and 
many other areas of science and engineering. An enormous amount of work has gone into the theoretical 
analysis of these problems and the consequent design of careful mathematical algorithms, and associated 
computer software, for solving them. When people talk about the technology  behind medical imaging they often 
think of scanners, large magnets and machines that make loud buzzing noises. However, the real technology 
behind them lies in the effective mathematical algorithms that make them work. It is this mathematical technology 
that I will describe in this lecture. For more information about inverse problems see the summary in [1] and the 
excellent book [2]. 
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Milk Deliveries, Killer Sudoku and Griddler 
 
The first example of an inverse problem that we will look at is tomography, which is the mathematics behind 
the CAT scanner used to produce the image of the brain above. Before delving into the depths of medical 
science, we will start with a simple example which illustrates the principles of tomography, and which has a very 
nice link to the various types of Sudoku that have become very popular recently. This example involves milk 
deliveries. Imagine that milk and fruit juice is delivered in bottles that are placed in trays with 9 compartments 
arranged as a 3 × 3 grid. Each compartment of the tray contains a bottle, which may contain milk, juice or be 
empty. The question is: which type of bottle is in which compartment? 
 
Unfortunately, other trays are above and beneath the one we're interested in, so we can't look down on top of 
the tray. At first sight it would seem impossible to solve this problem. However, we can peer in through the 
sides and we can measure how much light is absorbed in different directions. Different types of bottle absorb 
different amounts of light. Careful measurements have shown that milk bottles absorb 3 units, juice bottles 2 
units and empty bottles one unit. If a light beam is shone through several bottles, then this absorption adds up. 
If, for example, a light beam shines through a milk bottle and then a juice bottle, then 5 units are absorbed. If it 
passes through three empty bottles then 3 units are absorbed. 
 
In the example below we have indicated the total amount of light absorbed when shining light through each of 
the rows and each of the columns. 
 
 
                                           
                                                                        5 
 
 
                                                         6      
                                                                       
 

                                                    4              
                                                                 

 6             3            6 

 
 
To solve this puzzle, we must place a bottle with 1, 2 or 3 units of light absorption in each compartment, with 
the sum of the units in the first row equalling 5, in the second row 6 etc. The middle column contains 3 bottles 
and also absorbs 3 units of light. The only way this can be done is for each compartment of the middle column 
to contain one empty bottle absorbing one unit of light each. What about the other compartments? 
Unfortunately we don't have enough information (yet) to solve this puzzle. Here are two different solutions: 
 
 
 
 
 
 
 
 
 
 
We are faced with a rather unusual situation for a mathematician, in that we have two perfectly plausible 
solutions to the same problem. This is quite unlike a problem such as 1+2 which can only have the answer of 3. 
Problems like the milk bottle one are examples of the ill-posed problems we described earlier and are common 
in situations where we are trying to extract information from an image. To find out exactly how the bottles are 
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distributed, we need to put in a little extra information. One obvious extra thing we can measure is the light 
absorbed in the two diagonals of the tray. We do this and find that 6 units are absorbed in the top left to bottom 
right diagonal, and 3 units in the bottom left to top right diagonal. From this extra piece of information it is 
clear that the first solution, and not the second, corresponds to the measurements made. It can be shown with a 
bit of extra maths, that if we can measure the light absorbed in the rows, columns and diagonals exactly, then we 
can uniquely determine the arrangement of the bottles in the compartments of the tray. 
 
This problem may seem trivial, but it is very similar to the medical imaging problem we will describe in the next 
section, and shows how important it is to obtain enough information about a situation to make sure that we 
know what is going on exactly. 
 
If any of this looks familiar to newspaper readers, then it is. Killer Sudoku is an 
advanced version of the popular Sudoku puzzle. In Killer Sudoku, as in Sudoku, 
the player is asked to place the numbers 1 to 9 in a grid with each number 
occurring once and once only in each row and column. However, rather than 
giving the player some starting numbers (as in Sudoku) Killer Sudoku tells you 
how the numbers add up in certain combinations. This is precisely the same as 
the problem described above. Griddler is another puzzle in which the reader is 
given information on the number of occupied squares in the horizontal and 
vertical columns of a grid. Solving a Griddler puzzle such as the one opposite 
uses many of the techniques used to solve a tomography problem. 
 
 
CAT and the Radon Transform 
 
Until relatively recently, if you had something wrong with your 
insides, you had to be operated on to find out what it was. Any 
such operation carried a significant risk, especially in the case of 
problems with the brain. However, this is no longer the case; as 
we described in the introduction, doctors are able to use a whole 
variety of scanning techniques to look inside you in a completely 
safe say. A modern Computerised Axial Tomography (CAT) 
scanner is illustrated on the right. 
 
In this scanner the patient lies on a bed and passes through the 
hole in the middle of the device. This hole contains an X-ray 
source, which rotates around the patient. The X-rays from this source pass through the patient and are detected 
on the other side. The level of intensity of the X-ray can be measured accurately and the results processed. The 
resulting fan of X-rays is illustrated in the following figure (with a conveniently circular patient). 
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As an X-ray passes through a patient, it is attenuated so that its intensity is reduced. The degree to which this 
happens depends upon what material the ray passes through: its intensity is reduced more when passing through 
bone than when passing through muscle, an internal organ, or a tumour. A key step in reconstructing an image 
of the body from a set of X-ray measurements is to carefully measure exactly how different materials absorb X-
rays. When an X-ray passes through a body, it does so in a straight line, and its total absorption is a combination 
of the amounts by which it is absorbed by the different materials that it passes through. To see how this 
happens, we need to use a little calculus. Imagine that the X-ray moves along a straight line and that at a distance 

 into the body it has an intensity . As   increases, so  decreases as the X-ray is absorbed. Now, if the 
X-ray travels a small distance its intensity is reduced by a small amount . This reduction depends both 
on the intensity of the X-ray and the optical density   of the material. Significantly, the optical density tells us a 
lot about the properties of the body itself, and we can use this to image the inside of the body. Provided that the 
distance travelled is small enough, the reduction in intensity is related to the optical density by the formula  
                                             

 

 

 
 
Now, when the X-ray enters the body it will have intensity and when it leaves it will have intensity . 
We can combine all of the contributions to the reduction in the intensity of the X-ray given by all of the parts of 
the body that it travels through. Doing this, we find that the attenuation (the reduction in the intensity) is given 
by 

 

 

    

 
This is the attenuation of one X-ray and it gives some information about the body. Below we see an object 
irradiated by several X-rays with the intensity of the rays measured on a detector. Here some X-rays pass 
through all of the object and are strongly absorbed so that their intensity (recorded at the centre of the detector) 
is low, while others pass through less of the object and are less strongly absorbed. Effectively the object casts a 
shadow of the X-rays and from this we can work out its basic dimensions. We illustrate this below.  
 

 
 
 
 
 
 
 
 
 
 
 

 
The intensity of the X-ray where it hits the detector depends on the width of object and the length of the path 
travelled both through the object and the air. This graph shows the intensity of the rays as they hit the detector. 
Rays that travel through the full width of the object have lowest intensity, as we can see from the dip in the 
middle of the graph. Rays that just miss the body have the highest intensity, because of all rays that are not 
absorbed they travel the shortest distance. This is what leads to the by the two spikes of the graph. Towards the 
edges the graph falls off, reflecting the fact that the corresponding rays have travelled a comparatively long 
distance. However, the secret to computerised axial tomography is to find out much more about the nature of 
the object than just its dimensions, by looking at the attenuation of as many X-rays as possible. To do this, we 
need to think of a number of X-rays at different angles  and distances from the centre of the object. A 
typical such X-ray is illustrated below.  



 

6 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This X-Ray will pass through a series of points at which the optical density is . Using the equation 
for a straight line these points are given by  
 

             

where s is the distance along the X-ray. In this case we now have  

      

where                        

     

The function is called the Radon transform of the function u(x,y). It is a map from the object to the 
shadow cast by that object. The larger the value of R, the more an X-ray of this particular orientation is 
absorbed. The Radon transformation lies at the heart of the CAT scanners and all problems in tomography. It 
was first studied by Johann Radon in 1917. (Radon is also famous for some very important discoveries related to 
the branch of mathematics called measure theory, which is the basis of the theory of integration.) By measuring the 
attenuation of the X-rays from as many angles as possible, it is possible to measure this function to a high 
accuracy. The big question of mathematical tomography is then the problem of inverting the Radon transform, in 
other words  
 
 

Can we find the function u(x,y) if we know the function ? 
 
 
This is a classic inverse problem! In a medical scanner we need to solve this problems quickly and reliably in 
such a way that the results are clear to a clinician. Incidentally, this is exactly the same problem as was faced by 
our milk deliverer in the previous section. The short answer to this question is YES, provided that we can make 
enough accurate measurements. To show this rigorously is hard, and was part of Radon’s great achievement. To 
then implement a practical algorithm is also hard, and took the combined forces of many mathematicians, 
engineers and computer scientists. However, a quick motivation will be given by the following example. In the 
two figures below we see on the left a square and on the right its Radon transform in which the large values of R 
are shown as darker points.  
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The key point to note in these two images is that the four straight lines making up the sides of the square, show 
up as points of high intensity (arrowed) in the Radon transform. The arrowed points give both the orientation 
of the lines and their distances from the centre of the square. The reasons that lines give large values for R at 
certain points is that an X-ray passing straight through a line is strongly absorbed, whereas one which misses it, 
even slightly, is hardly absorbed at all.  Thus we can find the square by looking for the straight lines. Basically 
the Radon transform is good at finding straight lines in an image. One method for finding called the 
filtered back projection algorithm, works (roughly) by assuming that the original image is made up of straight lines and 
drawing those corresponding to the high values of R. This method is fast but not particularly accurate. However, 
it is now possible to find u(x,y) much more accurately, reliably and quickly.  The reason for this is twofold. 
Firstly it is due to the increases in computer power and in sensor technology. Secondly, and possibly more 
significantly, it is due to the development of advanced mathematical and computer algorithms (such as the 
conjugate gradient method) which are then implemented in the software of the scanning devices. Without the use of 
such algorithms these devices simply would not work. To see details of the various algorithms the book [3] is an 
excellent summary.  
 
Saving the Bees    
 
Mathematical research is constantly going on in order to improve these 
algorithms. This work is not only to make them faster, more accurate, and 
more reliable, but also to achieve the same results with fewer samples and 
also to deal with moving objects. Here we enter the rich and new field of 
compressed sensing [4].  A remarkable application of the use of these methods 
comes from efforts to save the bees. One of the major problems facing 
modern civilisation is the decline in the bee population. Einstein himself 
recognised the possible threat to us all if bees disappeared. Unfortunately, a 
combination of changes in land use, climate change and the effects of the 
Varroa mite, mean that the bee population is rapidly declining. One way to 
understand why this is happening is to study bees in the hive and to see how 
they respond to changes in climate and/or are affected by different diseases. 
The traditional way of doing this is to open the hive and have a look. 
Naturally this disturbs the bees. A better way is to study them without 
disturbing the hive. This can be achieved by using tomography. To do this 
scanners are placed around the outside of the hive and low intensity X-rays 
are shone through the hive. Two issues make this much harder than conventional imaging. Firstly, much lower 
intensities have to be used, and secondly, bees have an annoying habit of moving around whilst they are being 
scanned. This means that advanced algorithms need to be developed to deal with resulting lack of data. 
Fortunately (for the bees) these algorithms are successful and the image above shows not only the bees but also 
the details of the honey comb in their hive. For more detail see the work of Mark Greco in [5]. 
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MRI and FMRI Imaging 
 
Whilst CAT scanning is fast and reliable it has a number of disadvantages. Foremost amongst these is the way 
that it uses potentially harmful X-rays which should normally be avoided. Secondly, it has problems resolving 
fine details within the body, and certainly has trouble looking at changing physiology. Many of these problems 
are overcome by MRI, or Magnetic Resonance Imaging scanners. MRI scanners work by making the Hydrogen 
atoms in the abundant body water spin in a very high magnetic field. When subjected to a magnetic field, the 
atoms line up like tops in the direction of the field.  Typically this means that they are pointing to either the 
patient's head or to their feet, with about half. Most of these cancel each other out, but there are a few which are 
not. A careful arrangement of extra gradient magnets alter the main magnetic field allowing slices can be taken of 
any part of the body Next, the MRI machine applies a carefully tuned radio frequency pulse directed towards 
the relevant part of the body. The RF pulse forces the unaligned hydrogen protons to spin in a particular 
direction. When the RF pulse is turned off, the protons slowly return to their natural alignment, and release the 
energy absorbed from the RF pulses. When they do this, they give off a signal that coils in the machine pick up 
and convert to an image using further careful mathematical algorithms. Many of the difficulties associated with 
inverse problems do not arise in MRI scanners (as the source of radiation comes from inside the body rather 
than outside). This means that the resulting images are often much better in an MRI scanner than in a CAT 
scanner. An MRI image is shown on the left below. Contrast with the CAT scan image at the start of this article. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the right we see a further MRI image obtained using the FMRI (functional MRI) process. In this the MRI 
process measures the amount of Oxygen and the consequent changes in blood flow in the different parts of the 
brain. As blood flow is related to brain activity, FMRI can see what parts of the brain are active at any one 
moment, and can thus, to a certain extent, see what you are thinking. See [6] for more detail. 
 
Using Ultra-sound and MRI to Cure Cancer. 
 
A lovely application of imaging technology (in reverse) leads to a direct treatment for cancer.  
One of the most commonly used forms of medical imaging is ultra sound, which are sound waves of high 
frequency (much higher than we can hear). Sound is a compression wave through tissue and its speed  c(x)  
depends upon the density of the material. The sound intensity u(x,t)  then satisfies the wave equation 
 
 
 
 
 
 
 
 
 
 
 

http://science.howstuffworks.com/human-body/parts/16-unusual-facts-about-the-human-body.htm
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In ultra sound imaging a sound source emits a concentrated beam of sound from a transducer, which travels 
through a medium, such as human flesh. It is then reflected 
and absorbed by this medium before being received. By 
measuring the pattern of the received signals and solving an 
inverse problem involving the wave equation above, it is then 
possible to find the sound speed in different parts of the 
medium and then to work out the material density. By varying 
the location of the transducer a very complete picture of the 
material can then be built up. In the picture we see how this is 
done when ultrasound is used to image a foetus in the womb. 
Ultrasound is used here because sound waves are far less 
damaging than X-rays, and the procedure is far easier to 
implement than MRI.  
 
An almost exactly similar process is used in seismic imaging in which the sound waves are provided by the 
explosion of a cylinder of compressed air. Similar methods are used in sonar (either from dolphins or man-
made).  
 
As with all inverse problems there is a trade-off between resolution and an accurate solution of the problem, the 
time and effort that we need to use to solve it and (especially in the case of imaging a foetus) the intensity of the 
ultra sound waves used. (Basically the more intense the signal the better that detail can be seen, but the higher 
the chance of damaging the infant). If too high an intensity of ultrasound is used then the result can be damage 
to the soft tissue. Usually this is a bad thing, but in one instance it can be useful. That is when the soft tissue 
concerned is a cancerous tumour. Basically, if a high intensity ultrasound signal can be carefully focused then it 
can destroy a tumour by burning away the tissue. Much as in the way that a magnifying glass can be used to start 
a fire by focusing the rays of the sun. In particular the source out the ultrasound can be a transducer outside the 
body, and it can pass through healthy body tissue before being focused on a tumour, for example in  a bone 
marrow. With an appropriate choice of ultrasound frequency the point of focus can be as small as a grain of 
rice. Done appropriately this can destroy the tumour without damaging the surrounding tissue. So far, so good. 
But a problem arises when you try to focus the beam. Essentially the presence of bone and the unknown 
properties of the materials inside the body, make it very hard to focus the ultrasound beam in advance. To our 
rescue comes MRI imaging. By looking at the change in the phase of the MRI signal it is possible to tell the 
temperature of the tissue. In the MR-HIFU process (Magnetic Resonance – High Intensity Focused Ultrasound) 
the ultrasound is directed at the tumour and the point of focus is monitored using MRI imaging by looking at 
the temperature of the tissue. The point of focus can then be changed till it is on the tumour and then the 
intensity of the ultrasound increased to destroy the tumour. This method of destroying a tumour, and thus 
helping to cure cancer, is still under clinical trial, but holds promise as a new weapon for doctors in the fight to 
save lives.   
 
Other Ways That Tomography Can Save Your Life 
 
Tomography has many applications quite different from those in medicine. An interesting example comes from 
archaeology, where tomography was used to determine the cause of Tutankhamen's death. A CAT scan of the 
mummy revealed a swelling in the knee, indicating that death was the result of a massive infection. The cause of 
this was possibly an injury inflicted by a fall. Whether Tutankhamen was pushed or fell by accident, however, 
will have to remain a mystery, which even a CAT scanner cannot solve. More generally, we can apply 
tomography to any problem where we have information about the average of a function along a straight line. It 
can also be used to find evidence for straight lines in an image (such as the edge of an object). We will now 
describe two examples of how tomography is used to help save lives. 
 
GPS Satellites and Flight Safety  
 
Orbiting the Earth, are a large number of GPS satellites that are transmitting radio signals down to the ground. 
If you can detect the signals and find the phase difference between the signals from several different satellites, 
then you can work out your location with a high degree of accuracy. GPS positioning methods are very widely 
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used by aircraft navigation systems, SATNAV devices, and hikers and their accuracy is now vital for many 
applications where safety is essential. (Details of how GPS systems work will be given in the next lecture in this 
series). However, one of the problems with this system is that variations in the ionosphere (the upper part of the 
Earth's atmosphere) can affect the radio signals and change their phase by small amounts. This phase change 
can lead to errors in the position given by the GPS system. These are not very large and are perfectly acceptable 
for navigating. However, when landing an aeroplane it is vital that its height is known to very high precision and 
even small GPS errors can have large consequences. Here an accurate understanding of the state of the 
ionosphere is essential. There are many other reasons why understanding the ionosphere is important. Chief 
amongst these is that fact that the ionosphere has a very significant effect on the propagation of radio waves and 
on communication in general. Given that we rely hugely on communication technology, understanding when or 
not it will work is of vital importance.  Roughly speaking the effect of the ionosphere is that radio waves can 
either bounce off it, greatly increasing the range of a radio transmitter, or changes in the ionosphere can lead to 
radio interference. 
 
Remarkably, it is possible to monitor the state of the ionosphere using tomography [7,8]. In the problem of 
imaging a patient we shone X-rays through their body. To image the ionosphere we use the transmissions from 
the GPS satellites. These form a very convenient set of "straight lines" passing through the ionosphere. The 
paths that they take are shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The phase of the radio waves is affected by the electron content of the atmosphere, so that the total change in 
the phase is proportional to the integral of the electron density along the ray path. If we can measure these 
phase changes, then we can estimate the electron density integrals and work out the Radon transform of the 
electron density. We seem to be in exactly the same situation as in the medical imaging problem and hence able 
to work out the electron density at any point in the atmosphere. 
 
Well, not quite. There are two big differences between this problem and the CAT problem. Firstly, the satellites 
are usually moving relative to the Earth. Secondly, there are large parts of the Earth's surface where we cannot 
make any measurements. These include the oceans, where there are no receivers for the satellite signals, and the 
poles, which do not have satellites orbiting above them. Thus we have a lot less information than we had in the 
case of the CAT scanner. This means that we are often in the 
situation of the milk deliverer who couldn't distinguish between 
two different arrangements of milk bottles, each of which led to 
the same set of measurements. 
 
To get round this problem in the case of the ionosphere, we have 
to use a-priori information about the state of the ionosphere, or in 
other words a reasoned guess of what the solution should look 
like. This will allow us to reject one solution which doesn't look 
like this guess, and to choose the solution which looks as much 
like the guess as possible. Fortunately, we understand the physics 
of the ionosphere well enough for our reasoned guess to be pretty 
close to the truth. By doing this (together with some other clever 
refinements) it is possible to use tomography to find the state of 



 

11 
 

the ionosphere. In the figure on the right we illustrate a calculation (using the MIDAS software developed at the 
University of Bath) of an ionospheric storm (in red) developing over the southern part of the USA. This is 
important as it could lead to a break down in communications over this region, and/or a loss of GPS signals, 
and an accurate understanding of the state of the ionosphere can be critical in this situation. More details of the 
methods used to produce this picture are given in [7]. 

    
Detecting Land-Mines 
 
Anti-personnel land-mines are one of the nastiest aspects of the modern warfare. They are typically triggered by 
almost invisible trip-wires attached to the detonators. Any algorithm for the detection of trip-wires must work 
quickly and not get confused by the leaves and foliage that obscure the wire. An example of the problem that 
such an algorithm has to face is given in the figure below, in which some trip-wires are hidden in an artificial 
jungle. 
 
Finding trip-wires involves finding partly obscured straight lines in 
an image. Fortunately, just such a method exists; it is the Radon 
transform! For the problem of finding the trip-wires we don't need 
to find the inverse, instead we can apply the Radon transform 
directly to the image. Of course life isn't quite as simple as this for 
real images of trip-wires, and some extra work has to be done to 
detect them. In order to apply the Radon transform the image 
must first be pre-processed to enhance any edges. Following the 
application of the transform to the enhanced image a threshold 
must then be applied to the resulting values to distinguish between 
true straight lines caused by trip-wires (corresponding to large 
values of R) and false lines caused by short leaf stems (for which R 
is not quite as large). Following a sequence of calibration 
calculations and analytical estimates with a number of different 
images, it is possible to derive a fast algorithm which detects the 
trip-wires by first filtering the image, then applying the Radon transform, then applying a threshold and then 
applying the inverse Radon transform. The result of applying this method to the previous image is given below, 
with the three detected trip-wires are highlighted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note how the method has not only detected the trip-wires, but, from the width of the lines, an indication is 
given of the reliability of the calculation. This by using this algorithm we can find trip wires and hence get rid of 
land mines.  
 
As advertised in the title, maths truly does save lives! 

 
© Professor Christopher Budd, 2017 
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