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Are Averages Typical?
Professor Raymond Flood
Thank you for coming to my fifth lecture in the series on shaping modern mathematics. It is on statistics with title Are Averages Typical?
I would argue that we are all on the receiving end of statistics in many varied and important areas. Sometimes the statistics are used to describe populations or behaviours such as the age profile of people attending this lecture or the number of deaths at various hospitals over a certain period of time.

Other times statistics are used to draw inferences about populations on the basis of taking a sample as we are seeing currently in the opinion polls for the outcome in the by-election at Eastleigh. The opinion polls try to infer from a sample what the behaviour will be of the voting population.

This distinction between the whole population and a sample taken from it will be a crucial one in this lecture.

Let me give you an overview of the contents of the lecture.

In the first part I want to talk about how we can represent and then summarise sets or collections of data. The first approaches I will look at are visual ones, whether tables or maps or area diagrams or histograms. In this section we will look at work of Edmond Halley, of Halley’s Comet fame, Florence Nightingale, John Snow and his work on epidemiology and finally some of the work of Karl Pearson, a former Gresham professor of Geometry.

These representations try to, in some sense, show the whole population. The next approach is to try to summarise the population using a few of its characteristics. These approaches fall into two families. The first are measures of location that try to describe a typical or central value of the data. Examples are means and medians and we will consider some of their strengths and weaknesses.

The second family are measures of variation or dispersion and they try to describe the variation in the data. Examples are the range and standard deviation, and again we will compare strengths and weaknesses.

These measures of location and dispersion can only give very partial information about the data. There is too much variation to capture it all in a few numbers. We need to be able to quantify the variability in a more precise way and for that we need probability.

I will introduce probability and show you several examples, including how Edmond Halley used probability to calculate the price to pay for a lifelong annuity. Here he obtained the probabilities from the data.  In another example, if you have to play the lottery, I will suggest how to do it to maximise your winnings! In this case the probabilities are obtained from the underlying model.

The last sections deal with the relations between a sample and the population from which it is drawn.

The question we want to address is: how reliably does the sample reflect the population?

Let me give an example. There is going to be a by-election and certain proportions of the voters will vote for each candidate offering themselves for election. If we take a sample of size 1200 and ask them for their voting intentions how well does it represent the voting population? It turns out that, as long as the sample is chosen randomly, that the proportions obtained from the sample are close to the values in that population. And amazingly we can quantify how close the agreement is! This follows from the crucial result in probability and statistics called the Central Limit Theorem and it is with this result and its consequences for sample sizes that I will finish. 

Let me start with Graphical methods of describing a population. The first method uses tables, a technique that goes back thousands of years to Ancient Mesopotamia and still underlies modern spread sheets, such as Excel.
Edmond Halley played a significant role in the mathematical and scientific life of the late seventeenth and early eighteenth century. He is probably best known today for the prediction, based on Newtonian mechanics, of the return of a comet in 1758, now known as Halley’s Comet. Its last return was in 1986 and the next one will be in 2061.

We also owe the publication of Isaac Newton’s great work Principia Mathematica to Halley. In the Principia Newton put forward his law of universal gravitation and his laws of motion and used them to explain planetary motion, the orbits of comets, the variation of the tides and the flattening of the Earth at its poles due to the Earth’s rotation.

It was Halley who cajoled and persuaded Newton to finish and publish the Principia. Without Halley the Principia would never have appeared. Moreover as the Royal Society was unable to pay for its publication, having spent its money on a lavish History of Fishes Halley paid for it himself. The Royal Society rewarded him with fifty copies of the History of Fishes! It is as if the staff at Gresham College was paid with the hand-outs of the lectures of the professors: not an enticing prospect.

Edmond Halley is also credited with the creation of actuarial science. Here we see the table that under laid his great work on the valuation of life annuities. The data was collected by the Caspar Neumann, the pastor of Breslau, from church registers over the period 1687 – 91. The first entry refers to 1000 living children that will be age 1 at their next birthday and it continues on through the different ages.  There are only 710 left by age 6 i.e. nearly 300 have died. Over half will have died by age 34, and all but a 100 dead by age 74.

Halley used the tables together with the idea of compound interest to determine the price that should be paid for an annuity which is a regular yearly payment for the rest of your life. I will show how he did this when we come onto probability.

Throughout the seventeenth century magnetism was of great scientific interest in particular because of its use in navigation and it was an area in which Halley was very interested. 

To further these interests in the Earth’s magnetic field Halley succeeded in getting himself appointed Captain of HMS Paramore on a survey expedition of the Atlantic to plot the changing magnetic variations, for example the deviation between magnetic north and true north.  On his return to England in 1701 he published his findings, and produced a map which came to be regarded as something of a wonder in its own right.  

He used the presentational technique of joining locations possessing the same magnetic deviation with a connecting line, so that they could be conveniently traced across the chart.  

We can see on the map the line of no variation and below it lines connecting places with the same east variation and above it lines connecting places with the same west variation.

This method of connecting places on a map with the same value of some property subsequently entered into international usage, to show contours, depths, and all manner of cartographic, geographical, and other details, in addition to magnetic ones. It also has the advantage in, for example, on a weather map of helping to show how patterns are changing over time.

The next visualization technique is associated with Florence Nightingale.

Florence Nightingale (1820–1910), the ‘lady with the lamp’ who saved many lives during the Crimean War, was also a fine statistician who collected and analysed mortality data from the Crimea. 

She showed an early interest in mathematics — at the age of 9 she was displaying data in tabular form, and by the time she was 20 she was receiving tuition in mathematics, possibly from James Joseph Sylvester. Nightingale regarded statistics as ‘the most important science in the world’ and used statistical methods to support her efforts at administrative and social reform. She was the first woman to be elected a Fellow of the Royal Statistical Society and an honorary foreign member of the American Statistical Association. 
By 1852 Nightingale had established a reputation as an effective administrator and project manager. Her work on the professionalization of nursing led to her accepting the position of ‘Superintendent of the female nursing establishment in the English General Military Hospitals in Turkey’ for the British troops fighting in the Crimean war. She arrived in 1854 and was appalled at what she found there. In attempting to change attitudes and practices she made use of pictorial diagrams for statistical information, developing her polar area graphs. 

The graphs have twelve sectors, one for each month, and reveal changes over the year in the deaths from wounds obtained in battle, from diseases, and from other causes. They showed dramatically the extent of the needless deaths amongst the soldiers during the Crimean war, and were used to persuade medical and other professionals that deaths could be prevented if sanitary and other reforms were made. 

On her return to London in 1858, she continued to use statistics to inform and influence public health policy. She urged the collection of the same data, across different hospitals, of: 

• the number of patients in hospital 

• the type of treatment, broken down by age, sex and disease

• the length of stay in hospital

• the recovery rate of patients.

She argued for the inclusion in the 1861 census of questions on the number of sick people in a household, and on the standard of housing, as she realised the important relationship between health and housing. In another initiative Florence Nightingale tried to educate members of the government in the usefulness of statistics, and tried to influence the future by establishing the teaching of the subject in the universities. For Nightingale the collection of data was only the beginning. Her subsequent analysis and interpretation was crucial and led to medical and social improvements and political reform, all with the aim of saving lives.

At about the same time we had another statistical initiative aimed at saving lives.

The 1830s saw the beginning of a series of cholera epidemics in London. The one in 1831 killed over thirty thousand people in three months. 

John Snow was a doctor and founding member of the London epidemiological society. During the cholera epidemic of 1854 in the Soho area of London he plotted the locations of the homes of the cholera victims.

Snow believed that cholera was due to polluted water and from his map he noted that 500 people living close to a water pump at the junction of Cambridge Street and Broad Street in Soho had died over a ten day period. Further investigation revealed that all those that had died had drunk water obtained from the pump. Snow persuaded local officials to remove the handle from the pump so that it could not be used and the epidemic began to subside.

Snow used such maps and also graphs to demonstrate the effect of the contaminated water coming from the Broad Street pump.

Snow also had a reputation in using anaesthetics, particularly ether and chloroform. He administered chloroform to Queen Victoria when she gave birth in 1853 to Prince Leopold and in 1857 to Princess Beatrice. The picture I showed of him was from a year before his death at age 45.

Further information can be obtained at http://www.ph.ucla.edu/epi/snow.html

The last graphical statistical technique I want to consider is due to a former Professor of Geometry at Gresham College. He was Karl Pearson and is often credited with establishing the discipline of mathematical statistics.

Karl Pearson was Gresham professor of Geometry from spring 1891 to summer 1894 and he delivered 38 lectures during his tenure. Pearson’s audience consisted of clerks and others who worked during the day in finance in London. Thirty of his lectures were on statistics and he took a geometrical approach to his teaching. Two concepts that he introduced are still of importance today. 

In his lecture on 18th November 1891he introduced the idea of a histogram. 

This is a way of graphically representing a collection of data. For example the data set shown on the left is of the heights of 31 cherry trees, which is very hard to absorb in this form. On the right we represent the data in a histogram. The horizontal axis is the quantity being measured which in this case height, and it is divided into bins, from 60 to 65, 65 to 70 and so on.

We want the area of the rectangle over each bin to be proportional to the number of heights falling in that bin. Since each bin has the same width, 5 feet, the vertical axis tells us how many trees have height in each of these bins. In doing this you need some rule for deciding what to do when a height falls on the boundary of a bin.

Here we have another graphical method. Gresham College recently conducted a survey at some of its lectures and one of the questions asked was about age. Here we have eight categories of age range going from under 18 to over 75. There were 545 responses and the vertical axis tells you how many people are in each of the categories.

In his Gresham lecture on 23rd November 1893 Pearson introduced the term standard deviation which I will come to a little later.

Now let’s turn to the measures of location and variation that I mentioned earlier. First we will consider methods of location.

Probably the best known measure of location is the mean or average. This is calculated by adding all the results together and dividing by the number of numbers we have added together.

So the average of 9 and 21 and 30 is adding up these three numbers to get

 9 + 21 + 30 which is 60 and dividing by 3 gives 20. 

The title of the lecture is “Are averages typical” and the answer is not necessarily! For example the average person has fewer than two legs!  This is because some people have fewer than two legs but nobody has more than two, so dividing the total number of legs by the total number of people to get the average gives a number less than two.  Average does not mean typical!  

However I will give the opposite answer at the end of the lecture!

Finding the average of a set of numbers can also be severely influenced by extreme values.

For example: Suppose a firm has 7 employees. The CEO earns £155K and the other 6 earn £15K, £20K, £25K, £30K, £35K and £40K

The total of the salaries is £315K and the average salary is this total divided by 7 which gives £45K.

So only one person earns more than the average and the remainder earn less than the average. Again the average is not very typical.

But in spite of these disadvantages the average or mean has some nice statistical properties that we will meet towards the end of the lecture. 

To counter the effect of extreme values a measure of location called the median is sometimes used.

The Median is that observation with the property that half the remaining observations are smaller than it and half bigger than it. For the salaries example above

£15K, £20K, £25K, £30K, £35K, £40K and £155K

The median is the middle value when they are ranked in order and is £30K, which perhaps is more “typical” here. If there is an even number of observations the median is half way between the two in the middle.

However in the case where two people have obtained a pay rise of £100K giving salaries

£15K, £20K, £25K, £30K, £135K, £140K and £155K then the median is still £30K.

The median is insensitive to absolute values only to relative positions. Nevertheless the median is statistically important.

Two other measures of location are the minimum and the maximum of the data values.

I’m sure that you can see that although measures of location give a little information they do not give a lot. This is not surprising as it is impossible to capture the essence of a data set with just one number.

As the statistician Francis Galton put it “The knowledge of an average value is a meagre piece of information”

And the average is misunderstood as is brought out by this lovely letter to The Times newspaper on Monday, January 4, 1954:

Sir, In your issue of December 31 you quoted Mr. B.S. Morris as saying that many people are disturbed that about half the children are below the average in reading ability. This is only one of many similarly disturbing facts. About half the church steeples in the country are below average height; about half our coal scuttles below average capacity, and about half our babies below average weight. The only remedy would seem to be to repeal the law of averages.

As we have seen the letter writer could have said exactly half rather than about half if he had used the median!

Let us try to augment measures of location with measures of variation.

The simplest one is simply the range which is defined as:

Range = maximum value – minimum value

So for our original salary data:

£15K, £20K, £25K, £30K, £35K, £40K, £155K

The range is £140K.

If you are told about seven salaries only that their average is £45k and their range is £140K – you are not told the salaries - then on reflection you would suspect that there was a large salary and lots of small ones. So that is quite helpful.

More information about the variability is given if we split the range up into intervals and one way of doing this is to use percentiles. These are known to all parents of small children and their grandparents because charts of percentiles appear in every child’s Red Book which is a history of the child’s development.

The pth percentile in a data set or population is that observation where p% of the population is smaller than or equal to it.

So if ‘41’ is the 80th percentile in a set of observations then 80% of the numbers are smaller than or equal to 41.

The median is the 50th percentile.

A special name is given to the 25th percentile it is the first quartile.

A special name is given to the 75th percentile it is the third quartile.

So we can think as follows: a quarter of the observations are smaller than the first quartile, half are smaller than the median- which could be called the second quartile - and three quarters are smaller than the third quartile.

What I have said is essentially the truth but we have to be a little more careful in the definition if for example the number of observations is not a multiple of 100.

Let us now look at an important illustration of percentiles and quartiles.

This very nice chart gives information about the age distribution for boys up to 36 months. At the bottom it suggests it was compiled in 2000 for boys in the US. For each age it gives the information about the weights of children of that age, using percentiles.

Let us see how it works.

Here I have picked out in blue the age distribution of babies age 3 months. The bottom of the blue line is the 3rd percentile and the top is the 97th percentile. So 3% of babies have weight less than the bottom of the line and 3% have weight greater than the height of the line.

Here I have done the same thing for children at 12 months. So the 3rd percentile weight is just over 18 lbs and the 87th percentile is 28lbs. So 94% = 97% - 3% of 12 month old have weight between 18 and 28 lbs.

Once again, but now at age 24 months. Note that the blue line is getting longer as the age increases – there is more variation in the children’s weight as they get older.

The last one I will look at will be for age 33 months and we pick out some of the other percentiles on the chart. These are the black curved lines on the chart and there are nine of them. The bottom we have seen is the 3rd percentile, then 5th, 10th, 25th, 50th, 75th, 90th, 95th and finally 97th.

Here I have picked out the weights of 33 month children at some percentiles – this is the heights of the green lines.

The 3rd percentile is just over 24 lbs.

The 50th or median is under 31 lbs. So 47% of children have weight between 24 and 31 lbs.

The 75th percentile is 33lbs and the 90th 35.5.

Let’s plot an imaginary child’s weight development. The child is weighed every so often and the results indicated by the red marks. This child starts of on the 25th percentile, drops slightly below it, then back onto it. Then the child’s weight stays between the 25th and 50th percentile for the rest of the plot. 

The last visualisation method I will show you is the Box plot.

1. Horizontal lines are drawn at the median and at the upper and lower quartiles and joined by vertical lines to produces the box.

2. A vertical line is drawn up from the upper quartile to the most extreme data point that is within a distance of 1.5 times the inter quartile range. A similarly defined vertical line is drawn down from the lower quartile.

3. Each data point beyond the ends of the vertical lines is marked with an asterisk.

A boxplot gives an idea of the centre of the data (the median), the spread of the data, the interquartile range, and the presence of outliers and indicates the symmetry or asymmetry of the data values from the location of the median relative to the quartiles.

The percentile charts and Box plot give a lot of information about the distribution of the variability of the weights but we frequently want a single number to give us information about the variability and the most important of these is the standard deviation.

Let us suppose we have a population of n results 

x1, x2, x3, x4, ··· , xn  with mean
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Then a sensible measure of variability would be to measure how far each result is away from the mean and add up these differences. It turns out to be more tractable to square the distance each result is from the mean and then find the average of these squared deviations. Finally so that we have the same units as the original results we take the square root of everything.
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To get the standard deviation σ,
σ = [image: image6.png](n-)?
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Let me illustrate using the salaries data:

For £15K, £20K, £25K, £30K, £35K, £40K and £155K

As μ = 45. then σ is:
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= 42.01


We will see when we come to the normal distribution, that the standard deviation is very useful in telling us about the range of variability about the mean.

If we want to capture a description of all the variability we need to introduce probability.

Probability postulates how likely various events are.

I will look at 

What is probability?

Examples: coins, lottery, measurements, annuities

Normal curve.

I find it useful to think in terms of experiments and outcomes.

Probability theory is used as a model for situations in which the results occur randomly. 

We call such situations experiments.

The set of all possible outcomes is the sample space corresponding to the experiment, which we denote by Ω.
Experiment: Toss a coin twice

Ω = [image: image11.png](HT, HH,TT, TH)




Experiment: Note how many times a coin is tossed until the first head appears. 

Ω = [image: image13.png]{1,2,3,4,5, -




Experiment: Take the chest measurement of a Scottish soldier
Ω = the set of positive real numbers between 1 and 100 inches
Another example we will use is: Throw a dice – there are six outcomes, obtaining a 1 or 2 or 3 or 4 or 5 or 6.

Let us look at the Experiment: Toss a coin twice

Ω = [image: image15.png](HT, HH,TT, TH)




The assumptions that the coin is fair and the tosses independent mean that 

P(HT) = ¼

P(HH) = ¼

P(TT) = ¼

P(TH) = ¼

Probability of getting at least one head = P(HT, HH, TH) = 3/4

Probability both tosses give the same result = P(HH, TT) = 2/4  = ½

Let us know look at the experiment: Note how many times a coin is tossed until the first head appears. 

Ω = [image: image17.png](1,2, 3,4,5,
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The assumptions that the coin is fair and the tosses independent mean that 

P(it takes 1 toss to get a H) = 1/2

P(it takes 2 tosses to get the first H) = P(TH) = ¼

P(it takes 3 tosses to get the first H) = P(TTH) = 1/8

P(it takes 4 tosses to get the first H) = P(TTTH) = 1/16

P(it takes 5 tosses to get the first H) = P(TTTTH) = 1/32

In the UK Lottery game six main numbers are drawn in the range 1 to 49, one after the other. Then one additional ball is drawn.

To calculate the probability of you winning with your choice of six numbers we need to count the number of different choices there are of six numbers from the 49 possibilities. 

The key assumption in calculating the probability is that every choice of six numbers is equally likely.

Let’s count!

There are 49 choices for the first ball and when it is drawn 48 choices for the next. Then there are 47 for the third, 46 for the fourth, 45 for the fifth and finally 44 for the sixth.

Altogether there are

49 x 48 x 47 x 46 x 45 x 44

different ways for the six balls to appear in order.

One result might be:

19 
17
31
11
41
2

But in this lottery the order does not matter, so the above result is the same as the results 

17
31
19
41
2
11: 
a different arrangement.

These are the same numbers in a different order. 

We need to count how many ways the same set of six numbers can arise.

If we calculate the number of different arrangements there are of six numbers, we find there are six choices for the first either 19 or 17 or 31 or 11 or 41 or 2. Then five for the next and four for the third, three for the fourth, two for the fifth and the last is what is left over.

This is 

6 x 5 x 4 x 3 x 2 x 1.

Hence we have the number of different selections of six numbers is 

(49 x 48 x 47 x 46 x 45 x 44) / (6 x 5 x 4 x 3 x 2 x 1)

= 49 x 47 x 46 x 3 x 44

=13,983,816.

The probability of winning is 1 in 13,983,816, that is 1 in nearly fourteen million.

We can perform a similar calculation to obtain the probabilities of matching other winning outcomes.

	Numbers Matched
	Odds Of Winning

	6 main numbers
	1 in 13,983,816

	5 main numbers + Bonus Ball
	1 in 2,330,636

	5 main numbers
	1 in 55,492

	4 main numbers
	1 in 1,033

	3 main numbers
	1 in 57


Every selection of six numbers is as equally likely as any other so you can not alter your chances of winning – except by buying more tickets! What you might be able to influence is what you win if your numbers do come up. In other words choose numbers that other people have not picked so that you do not share the prize. For example pick one of your six numbers greater than 31 as reportedly many people pick their numbers on the basis of birthdays. Some people I believe apply this approach to the numbers 1, 2, 3, 4, 5, 6. Apparently there are many hundreds of people with this selection.

I like the following story, told about the Nobel Laureate Enrico Fermi, that illustrates chance and coincidences

As to the influence and genius of great generals – there is a story that Enrico Fermi once asked General Leslie Groveshow how many generals might be called “great”. Groves said about three out of every 100. Fermi asked how a general qualified for the adjective, and Groves replied that any general who had won five major battles in a row might safely be called great. 

This was in the middle of World War II. Well then, said Fermi, considering that the opposing forces in most theatres of operation are roughly equal the odds are one of two that a general will win a battle, one of four that he will win two battles in a row, one in eight for three, one of sixteen for four and one of thirty two for five.

“So you are right, General, about three out of every 100. Mathematical probability, not genius.”

Let us return to Halley’s life table and use it to find the purchase price of an annuity. Imagine that I am aged 50 and I want to buy an annuity from you which means that I will give you a certain amount of money upfront and in return you will give me £1 at each of my subsequent birthdays for as long as I live. 

We want to calculate how much I should give you for you to agree to give me the annuity. 

I use £1 for illustration. If I want £1000 I just multiply the purchase price by 1000.

Let us examine the table.

We see that: At age 50

Probability of living to 51 is 335/346

Probability of living to 52 is 324/346

Probability of living to 53 is 313/346

Probability of living to 54 is 302/346

….

Probability of living to 84 is 20/346

And so the expected amount that I would expect to receive during my life is:

335/346 + 324/346 + 313/346 + 302/346 + … +  20/346

= £16.45

If I wanted £1,000 a year I would have to give you £16,450.

This is the simplest case because we are ignoring inflation, management charges, your profit and any interest you could obtain from the lump sum I give you at the start.

If you do a similar calculation for Age 1 you get £33 and for age 6 you get £41.

It is dearer to buy an annuity for a six year old than a one year old which reflects the high child mortality in this table.

You’ve probably been wondering what happened to the Scottish soldiers.

Quetelet was supervisor of statistics for Belgium, pioneering techniques for taking the national census. His desire to find the statistical characteristics of an ‘average man’ led to his compiling the chest measurements of 5732 Scottish soldiers and observing that the results were arranged around a mean of 40 inches, according to what is called the normal (or Gaussian) distribution. While statisticians and mathematicians uniformly use the term "normal distribution" for this distribution, physicists sometimes call it a Gaussian distribution and, because of its curved flaring shape, social scientists refer to it as the "bell curve”.

This normal distribution is the most important distribution in probability and statistics.

Let me tell you how it is used. In probability we want to give values between 0 and 1 to the various events in the sample space.  We achieve this for the normal distribution by using the areas under the curve. The total area under the curve is 1.

The area of dark blue region in the centre tells us that 68.2% of the area lies between the mean minus one standard deviation and the mean plus one standard deviation. So the probability of obtaining an outcome between the mean minus one standard deviation and the mean plus one standard deviation is 0.682.

The probability of getting an outcome between the mean plus one standard deviation and the mean plus two standard deviations is the middle shaded are on the right and since this is 13.6% the probability is 0.136.

There is a probability of 0.996 of lying within three standard deviations of the mean.

Here is the formula for the curve.

The reason for the normal curve being so important is not only that it arises in so many natural measurements but because of the central limit theorem which tells us that it is bound to arise when we take averages of samples. This result is the most important in probability in probability and statistics. It is called the Central Limit Theorem. Let me illustrate by the experiment of tossing a dice.
If we toss a fair dice we can obtain one of six outcomes, 1, 2, 3, 4, 5, 6, and there are all equally likely – that is what fair means.

I’ve shown them on this distribution.

If we throw the dice twice and calculate the average of the two throws we obtain this distribution of possible results:

Remember we are taking the average of the two results.

If we throw the dice 4 times then the distribution of possible results is:

Notice anything!

If we throw the dice ten times the distribution of possible averages of all the possible outcomes is:

This is very close to the Normal distribution and the more throws we make the better it will get.

But the Central Limit Theorem does not only tell us that the averages approach a normal distribution they tell us what normal distribution they approach.

If the underlying population has mean μ and standard deviation σ:

Then the means of samples of size n will be approximately normally distributed with mean μ and standard deviation σ/[image: image19.png]Vn



.

The approximation gets better as the sample size gets larger.

Let us see if that is borne out for the dice example.

Dice: Mean = 3.5 Standard deviation = 1.71

Then the means of samples of size 10 will be approximately normally distributed with mean 3.5 and standard deviation 1.71/[image: image21.png]V10



 = 0.54

For the Normal distribution 99.6% lie within 3 standard deviations of the mean, that is between

3.5 – 3 x 0.54 and 3.5 + 3 x 0.54

Which is 1.88 to 5.12 and if we look at our distribution we see that is indeed the case.

In this case anyway it seems justified.

Now to my lecture title again

This time, just to bring out the point I have included the word sample and the answer is yes!

Variation in the average of samples can be described using the normal distribution.

We can be 99.6% confident the sample average lies within 3σ/[image: image23.png]


of the population average.

But then if we take one sample, illustrated by the blue line, we are 99.6% confident that the population average lies within 3σ/[image: image25.png]


 of the sample average we obtained.

Can we apply this to estimating the proportion, p, of people voting for Party A?

The results I’ve given show that with a sample size of about 1100 we can be 95% confident that the answer our poll gives will be within 3% of the underlying proportion p.

With a sample size of 2500 we can be 99.6% confident that the answer our poll gives will be within 3% of the underlying proportion p.

These numbers arise because of the term involving the square root of the sample size and I’ve included the calculation at the end of the hand-out.

I will finish with a quote from the Introduction to Stephen Stigler’s History of Statistics.
Over the two centuries from 1700 to 1900, statistics underwent what might be described as simultaneous horizontal and vertical development: horizontal in that the methods spread among disciplines from astronomy and geodesy to psychology, to biology, and to the social sciences and was transformed in the process; vertical in that the understanding of the role of probability advanced as the analogy of games of chance gave way to probability models for measurement.

Thank you.

Advert for last talk

Appendix: With a sample size of about 1050 we can be 95% confident that the answer our poll gives will be within 3% of the underlying proportion p

We are 95% certain that the actual proportion, p, voting for party A is within 2 σ/[image: image27.png]Vn



 of the sample average. 

(The 2 comes from the normal distribution where 95% of the area of averages of samples of size n lies within 2 σ/[image: image29.png]Vn



 from the population average)

We do not know σ as it is [image: image31.png]Jex@ —p)



 

However the maximum this expression can be is [image: image33.png]


¼ for all p 

 Substituting 1/2 for σ makes 2 σ/[image: image35.png]Vn



  into:

1/[image: image37.png]Vn



  and we want this to be 0.03 (from 3%)

1 /[image: image39.png]Vn



 = 0.03

[image: image41.png]Vn



 = 1/0.03 = 32.34

n = 1046. 
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