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Ian Stewart

If you look at a guitar, mandoline, or lute — any stringed instrument with frets —
you’ll see that the frets get closer and closer together as the note gets higher. This is a
consequence of the physics of vibrating strings. Today’s Western music is based upon a
scale of notes, generally referred to by the letter A-G, together with symbols # (sharp) and
~ (flat). Starting from C, for example, successive notes are

@ D# ~ Gg As
CD EF GAB

D~ E~ G~ A~ B~
and then it all repeats with C, but one octave higher, On a piano the white keys are C D E
F G A B, and the black keys are the sharps and flats.

This system is a compromise between conflicting requirements, all of which trace
back to the Pythagorean cult of ancient Greece. The Pythagorean discovered that the
intervals between harmonious musical notes can be represented by whole number ratios.
They demonstrated this experimentally using a rather clumsy device known as a canon, a
sort of one-string guitar. The most basic such interval is the octave: on a piano it is a gap
of eight white notes. On a canon, it is the interval between the note played by a full string
and that played by one of exactly half the length. Thus the ratio of the length of string that
produces a given note, to the length that produces its octave, is 2/1. This is true
independently of the pitch of the original note. Other whole number ratios produce
harmonious intervals as well. The main ones are the~ourrh, a ratio of 4/3 , and thefi~fh,
a ratio of 3/2. Starting at a base note of C these are

CD EF GAB C
base fourth fifth octave
1234567 8

and the numbers underneath show where the names came from. Other intervals are
formed by combining these building-blocks.

You can find these ratios on a guitar. Place your left forefinger ve~ lightly on
the string, and move it slowly along while plucking the string with the right hand. Do not
depress the sting so that it hits any frets. In some positions you’ll hear a much louder
note. The easiest to find is the octave: place your finger at the middle of the string. The
other two places are one third and one quarter along the string.

All guitarists recognise the basic intervals octave, fourth, and fifth. In combination -
with the fundamental they form the common major chord. A standard 12-bar blues, in
the key of C, employs the chord sequence

C/// C/// C/// C/// F/// F/// C/// C/// G/// F/// C/// G///
or a near variant (often with seventh chords instead of major ones in the fourth and find
bars).

It is thought that, in order to create a harmonious scale, the Pythagorean began at a
base note and ascended in fifths. This yields a series of notes played by strings whose
lengths have the ratios

1 (;) (;)2 (;)3 (:)4 (;)5

or
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243
1 : ;: : ~.

Most of these notes lie outside a single octave, that is, the ratios are greater than 2/1. But
we can descend from them in octaves (dividing successively by 2) until the ratios lie
between 1/1 and 2/1. Then we rearrange the ratios in numerical order, to get

243
l;$:$—

128 .

On a piano, these correspond approximately to the notes
CD EGAB.

As the notation suggests, something is missing! The gap between 81/64 and 32 sounds
‘bigger’than the others. We can plug the gap neatly by adding in the fourth, a ratio of 4/3,
which is F on the piano. In fact, we could have incorporated it from the start if we had
descended from the base note by a fifth, adding the ratio 2/3 to the front of the sequence,
and then ascended by an octave to get 2x(2/3)= (4/3)

The resulting scale corresponds approximately to the white notes on the piano, and
is shown in (Fig.1).

CDEFGAB c I

Fig.1

The last line shows the intervals between successive notes, also expressed as ratios.
There are exactly two different ratios: the tone 9/8 and the semitone 256/243. An
interval of two semitones is (256/243)2, or 65536/59049, which is approximately 1.11.
A tone is a ratio of 9/8 = 1.125. These are not quite the same, but nevertheless two
semitones pretty much make a tone. Thus there are gaps in the scale: each tone must be
divided up into two intervals, each close to a semitone.

Th~re are various schemes for doing this. The chromatic scale starts with the
fractions (Z)n for n = -6, -5, ... , 5, 6. It reduces them to the same octave by repeatedy
multiplying or dividing by two, and then places them in order. The result is shown in
(Fig.2). Each sharp bears a ratio 2187/2048 to the note below it, and from which it t&es
its name; each flat bears a ~atio 2048/2187 to the note above. There’s a glitch in the
middle: two notes, @ and G , are trying to occupy the same slot, but differ very slightly
from each other.

I

Fig.2.
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There are many other schemes, also leading to distinctions between sharps and
flats, but they all involve a 12-note scale that is very close to that formed by the white and
black notes of the piano.

The reason for the glitch in the chromatic scale, and the reason that there are many
different schemes for building scales, is that no ‘perfect’ 12-note scale can be based on the
Pythagorean ratios of 3/2 and 4/3. By a perfect scale I mean one where the ratios are all
the same, so we get

1 r r2 r3 @ ... r12=2
for a fixed number r. The Pythagorean ratios involve only the primes 2 and 3: every
ratio is of the form 2a3~ for various integers a and b. For instance 243/128 = 2-735.
Suppose that r = 2a3b and r12 =2. Then 212a312b = 2, so 212a-1 = 3-12b. But an
integer power of 2 cannot equal an integer power of 3, by uniqueness of prime
factorization. Similar arguments show that no fixed integer ratio can work.

This mathematical fdct puts paid to any musical scale based on Pythagorean
principles of the harmony of whole numbers; but it doesn’t mean we can’t find a suitable
number r. The equation r12 = 2 has a unique positive solution, namely

r = 1242 = 1.059463094 ... .
The restiting scale is said to be equitempered.

If you start playing a Pythagorean scale somewhere in the middle — a change of
kq — then the sequence of intervals changes slightly. Equitempered scales don’t have
this problem, so they are useful if you want to play the same instrument in different keys.
Musical instruments that must play fixed intervals, such as pianos and guitars, generally
use the equitempered scale. The Pythagorean semitone interval is 256/243= 1.05349...,
which is close to 1242, so the name ‘semitone’ is used for the basic interval of the
equitempered scale.

How does this lead to the positions of the frets on a guitar? Think about the first
fret along, corresponding to an increase in pitch of one semitone. The length of string
that is allowed to vibrate has to be l/r times the length of the complete string. So the
distance to the first fret is 1- l/r times the length of the complete string. To get the next
distance, you just observe thtit everything has shrunk by a factor of r, so the spaces
between successive frets are in the proportions

1 l/r l/r~ l/r3
and so on. Now r is bigger than 1, so l/r is less than 1, and that means that the
distances between successive frets are smaller (Fig.3).

Fig.3
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When the Greeks were faced with numbers such as 12d2that cannot be written as
exact fractions — which they called irrational numbers — they usually resorted to
geometry. According to tradition, Greek geometry placed considerable emphasis on those
lengths that can be constructed using only a ruler and a pair of compasses. For example,
squares and square roots can be so constructed. However, it can be proved that there is no
ruler-and-compass construction for 1242.

The equitempered scale is a compromise, an approximation. The true fourth
sounds more harmonious than the equitempered fourth, and singers find it more natural.
Since the equitempered scale is a compromise, we may ask whether there is some
approximate geometric construction that tells you where to put the frets on a guitar. Not
only is there an approximate construction, but it has a very curious history. The story
illustrates the deep elegance of mathematics, but it is also a humbling tale: an outstanding
triumph of a practical man nullified by a professional mathematical’s carelessness.

In the 16th and 17th centuries, finding geometrical methods for placing frets upon
musical instruments - lute and viol rather than guitar - was a serious practical question. h
1581 Vincenzo Galilei, the father of the great Galileo Galilei, advmated the approximation

18/17 = 1.05882... .
This led to a perfectly practical method, in common use for several centuries. In 1636
Mann Mersenne, a monk better known for his prime numbers of the form 2P-1,
approximated an interval of four semitones by the ratio 2/(3-~2). Taking square roots
twice, he could then obtain a better approximation to the interval for one semitone:

dd(2/(3-~2)) = 1.05973 ...
which is certainly close enough for practical purposes. The formula involves only square
roots, and thus can be constructed geometrically as in Fig.6. However, it is difficult to
implement this construction in practice, because errors tend to build up. Something more
accurate than Galilei’s approximation, but easier to use than Mersenne’s, was needed.

In 1743 Daniel Strahle, a craftsman with no mathematical training, published an
article in the Proceedings of the Swedish Academy presenting a simple and practical
construction (Fig.4). Let QR be 12 units long, divided into 12 equal intervals of length
1. Find O such that OQ = OR = 24. Join O to the equally spaced points along QR. Let
P lie on OQ with PQ 7 units long. Draw RP and extend it to M so that PM = RP. If RM
is the fundamental pitch and PM its octave, then the points of intersection of RP with the 11
successive rays from O are successive semitones within the octave, that is, the positions of
the 11 frets b~tween R and M.

o
●

,.

Fig.4
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You
instrument.

might like to try it out, and compare with measurements from an actual
But how accurate is it? The FdmousSwedish geometer and economist Jacob

Faggot performed a trigonometric calculation to find out~and appended it to Strahle’s
article, concluding that the maxmurn error is 1.770. This is about five times more than a
musician would consider acceptable.

Faggot was a founder member of the Swedish Academy, served for three years as
its secretary, and published eighteen articles in its Proceedings. In 1776 he was ranked
as number four in the Academy: Carl Linnaeus, the botanist who set up the basic principles
for classifying animals and plants into families and genera, was just ahead of him in second
place. So when Faggot declared that Strahle’s method was inaccurate, that was that. For
example, F.W. Marpurg’s Treatise on Musical Temperament of 1776 lists Faggot’s
conclusion without describing S&Jhle’smethod.

It was not until 1957 that J.M.Barbour of Michigan State University discovered that
Faggot had made a mistake.

Faggot began by finding the base angle ZOPQ of the main triangle: it is 75031’.

From this he could find the length RP and the angle ZPRQ. Each of the eleven angles
formed at the top of the main triangle by the rays from the base could also be calculatd
without difficulty: it was then simple enough to find the lengths cut off along the fine RPM.

However, Faggot had computed ZPRQ as 40”14’, when in fact it is 33032’. This

error, as Barbour puts it, ‘was fatal, since ZPRQ was used in the solution of each of the
other triangles, and exerted its baleful influence impartially upon them dl.’ The maximum
error reduces from 1.7V0to O.15Y0,which is perfectly acceptable. Thus far the story puts
mathematicians, if not mathematics itself, in a bad light. If only Faggot had bothered to

measure ZPRQ. But Barbour went further, asking why Strahle’s method is so accurate.
He found a beautiful illustration of mathematics’s ability to lay bare the reasons behind
apparent coincidences. There is no suggestion that Strahle himself adopted a similar line of
reasoning: as far as anyone knows his method was based upon the intuition of the
craftsman rather than any specific mathematical principles.

The spacing of the nth fret along the line MPR can be represented on a graph
(Fig.5). We take the x-axis of the graph to be the line QR in Fig.10, with Q at the origin
and R at 1. We move MPR so that it forms the y-axis of the graph, with M at the origin,
P at 1, and R at 2. The successive frets are placed along the y-axis at the points 1, r,
r2,..., rll, ~12= 2. (Note that this differs from the ratios l/r, l/r2, ... mentioned
above, because we are working from the opposite end of the string.)
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A mathematician would call Str~hle’sconstruction a projection with centre O from
a set of equally spaced points along QR to the desired points along MPR. It can be shown
that such a projection always has the algebraic form

y = (m+b)/(cx+@ (1)
where a,b,c,d are constants. This is called afiactional linear function.

For Strahle’s method, you can check that the constants in (1) are a = 10, b = 24,
=-7, d= 24, so the projection takes a given point x on QR to the point

~ = (10x+24)/(-7x+24) on MPR. I’ll call this formula Strahle’s function. Strahle
didn’t derive it: it’s just an algebraic version of his geometric construction. However, it is
the key to the problem.

If the construction were exact, we would have y = 2x. Then the thirteen equrdly
spaced points x = n/12 on QR, where n = 0,1,2,...,12, would be transformed to the
points 2nl12= (21i12)n= rn on MPR, as desired for exact equal temperament. But it’s
not exact, even though Barbour’s calculations show that it’s very accurate. Why? The

clue is to find the best possible approximation to 2X,valid in the range O s x <1, and of
the form (ax+b)/(cx+@.

One way to do this is to require the two expressions to agree when x = O,~, and 1.
That gives three equations to solve for a, b, c, 4 namely

b~d= 1
(~a+b)/(;c+~ = (1242)12i2= (1242)6= 42

(2)
(3)

(a+b)/(c+@ = 2. (4)
At first sight we seem to need one more equation to find four unknowns, but redly we only
need the ratios bla, cla, and alla, so three equations are enough. You should redly
try to solve the equations yourself at this juncture; but here’s one method. We may fm the
value of d to be anything nonzero, and we decide to set d = 42. Then (2) implies b = d2

J
as well. , Equation 3) becomes

(za+J2) = 2(*c+d2)
or

a+2d2=c42+4
and (4) becomes

a+d2=2(c+42)
or

a=2c+ 42.
Eliminating a from (5,6) we get

2w3~2 = cd2 + 4
so

~2-42) = 4-342,
and multiplying by 2+d2 we get

2C = (4-3d2)(2+d2) = 8-6d2+4~2-6 = 2-2d2,
whence

c = l-d2.
Finally we solve for a from (6), to get a = 2-42. Thus this approach leads to the values

a=2-d2
b=~2
C= l-42
d=~2

and the best possible approximation (in our chosen sense) to 2Xby a fractional linear
function takes the form

~= (2- fi)x+p
-. (7)

(5)

(6)

(1- 42)X+42

That doesn’t look much like Strtihle’s function, but now comes a final bit of nifty
footwork. Barbour estimated the error in terms of the approximation 58/41 to 42, and
derived StrMle’s formula that way. Isaac Schoenberg did the same in 1982. If you just
substitute 58/4 1 for 42 in (7) then you get (24x+58)/(-17x+58), which is different horn
Strahle’s function.
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Nevertheless, the most natural thing to do is change 42 to some approximation —
but not 58/41. Here’s how. There is a series of rational numbers that approximate 42.
One way to get them is to start from the equation p/q =42 and square to get p2=2q2.
Because 42 is irrational, you can’t find integers p and q that satisfy this equation (or,
more accurately, because you can’t find integers p and q that satisfy this equation, ~2
must be irrational). But you can come close by looking for integers p and q such that
p2 is close to 2q2. The best approximations are those for which the eror is smrdles~ that
is, solutions of the equation p2 = 2q2* 1. For example, 32 = 2.22+1, and 3/2 = 1.5 is
moderately close to 42. The next case is 72 = 2.52-1, leading to 7/5 = 1.4, which is closer.
Next comes 172 = 2.122+1, yielding the approximation 17/12 = 1.4166..., closer still.
You can goon forever. To see how, consider the continued fraction for 42.

A continued fraction is an expression of the form

1
aO+

1

al+ ‘
1

~+a3+...

which we abbreviate to [aO;al ,a2,a3,...].

The continuedfraction for 42 is obtaind as follows. Start with the identity

42=1+ 1
I+&

and then substitute the right-hand side into itself in place of d2 to get

42=1+ 1 ,

1+1+ 1
1+~

Repeatin the process, we see that (in standard notation for continued fractions)
? 2 =-[1;2,2,2,2, ....].

H we truncate the continued fraction at some finite position, we get a rational approximahon
to 42. The theory of continued fractions tells us that this must be the best possible rational
approximation (with a given size of denominator), and not surprisingly we get a rational

p/q with P2 = 2q2 * 1. For example,
[1;2] = 3/2
[1;2,2] = 7/5
[1;2,2,2] = 17/12
[1;2,2,2,2] = 41/29

and so on. We recognise the first three approximations; and for the fourth we find that
412 =2.2g2 -1.

Indeed, if we write
[1;2,... (n copies) ... 2] = pn/qn

then
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1
Pn/qn = * + 1 + [1;2,... (n-1 copies) ...21

=1+
1

1 + P*_llq*-1

2qn-1+P“-1

= qn_l+Pn_l .

Comparing numerators and denominators we obtain a pair of recurrence relations

Pn = 2~n-1 + Pn-1
~n=~n-l+Pn-l.

For example, from p3 = 17, q3 = 12 we generate
p4 = 2.12+17 =41
q4 = 12+17 =29.

Continuing this process we get a table of approximations:

n Pn qn

;
3
4
5
6
7
8
9
10

3
7
17
41
99
23g
577
1393
3363
8119

2
5
12
29
70
169
408
985
2378
5741

each successive qn is the sum of the two numbers in the row above; each pn is twice the
second plus the first number in the row above. So we have a quick and efficient way to
generate rational approximations to 42, and incidentally we have proved that the
Diophantine equation p2 = 2q2 t 1 has infinitely many solutions. Pursuing these ideas
leads to a beautiful theory of the so-called Pe/1eq~tarion

p2=kq2&l.

In fact it was Lord William Brouncker, and not John Pen, who developed the theory: the
ideas were erroneously attributed to Pen by Leonhard Euler.

At any rate, we have lots of approximations to 42, among them being 17/12. Now
back to Strahle’s equation. Divide the numerdtor and denominator of formula (1) by 2 and
rewrite it as the equivalent formula —

x+ + (l-x)
J .

;+ + (1-x)
T

men replace d2 by the approximation 17/12, so that 1/42 becomes 12/17. nis gives
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X+:(1-X)

;+# (l-x)

This simplifies to give

10x +24

-7x + 24

which is precisely Smtihle’sformula!
So Strahle’s construction is very accurate, because it effectively combines two good

approximations:
● The best fractional linear approximation to Z is formula (7) above.
● Strahle’s function is obtained from formula (7) by replacing 42 by the excellent

approximation 17/12. (In fact David Fowler has pointed out to me that while 12/17 is not
a convergent of the continued fraction for 42, it is a so-called intermediate cortvergen~.)

Thanks to the mathematics-historical detective work of Barbour, we now know not
only that Strahle’s method is extremely accurate: we also have a very good idea of why it’s
so accurate. It’s related to basic ideas in approximation theory and in number theory.
This leaves just one question unanswered — and, barring a miracle or time travel,
unanswerable. How on earth did Strahle think of his construction to begin with?

O Ian Stewart
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