[image: image1.jpg]GKSHAM COLLEGE
)) LSZOW 7597 Q(Qo

4 March 2013
How Computers Get It Wrong:
2 + 2 = 5
Tony Mann
Computers are wonderful machines. They perform complex calculations incredibly quickly, and these often directly improve the quality of our life – for example in the heart pacemakers which maintain the health of about 3 million people worldwide. They predict the weather so that I could confidently choose to leave my umbrella at home this morning. They fly our planes and control the Docklands Light Railway train which brought me here tonight. My computer recognises the faces in my photographs, and not only organises but also plays my music collection. Computers have brought instantaneous worldwide communication to us, and allow me to check the claims I make in this lecture with an ease which would have been unthinkable twenty years ago.

And computers sometimes get it wrong. Tonight I shall be looking at why this happens. Some of my examples are in deeply serious contexts, others more frivolous; some errors are avoidable, and some not so. There will be some mathematics but I hope the points can be understood even if the maths is unfamiliar. I will try to show some of the insights of three great British pioneers of computation covering three centuries: Nevil Maskelyne (1732-1811), Charles Babbage (1791-1871) and Alan Turing (1912-1954). I’m going to focus on errors directly made by computers (albeit originally due to their human designers or programmers): an equally interesting topic, the errors that badly designed computer systems lead us to make when we interact unsuccessfully with them, won’t be covered tonight.

I want to start at the time when computers were human. In the eighteenth century a computer was not a machine, but a human being, who performed mathematical calculations by hand.

At this time, the problem of determining one’s position at sea was of vital importance for mariners. Harrison’s chronometer was prohibitively expensive so most ships relied on the method of lunar distances, which allowed a navigator to calculate their position by measuring the angle between the moon and various stars. Pre-calculated tables for these calculations were published in the Nautical Almanac, and with the help of these tables it took only a few hours’ hard mathematical work to find your longitude.

The fifth Astronomer Royal, Nevil Maskelyne, managed the Nautical Almanac. The mathematical calculations required in its production were extensive: the tables had to contain data for several years ahead since they would be taken on shipboard for long voyages. With no machinery to perform the calculations, Maskelyne employed “computers” all round the country to perform the computation for the Nautical Almanac tables.

Maskelyne well understood that people are not perfect calculators. He worked hard to arrange for the calculations to be as efficient as possible, devising algorithms which made the procedure as simple as it could be, minimising the number of steps and the potential for mistakes. But when an error in a table would put at risk the lives of sailors trying to establish their position on long, dangerous voyages, the consequences of human error were potentially very serious. So Maskelyne took another step. He arranged that every computation was essentially performed twice, by two different computers, or rather one “computer” and one “anti-computer”. A “comparer” then checked the results. Where the computer and anti-computer agreed, one could trust the calculation. Where they disagreed, one had erred, and the calculation could be redone to ensure that the published table would be correct.
This check was essential to the safety of navigators using Maskelyne’s tables. Maskelyne was well aware of the importance of the check of an independent calculation, so when his comparer found no differences at all between the calculations of Joseph Keech and Reuben Robbins, he did not congratulate his two computers on the accuracy of their calculations. Instead he sacked them for colluding! He believed that they could not have avoided making occasional errors, so the identical output indicated that they were working together, doing the calculations only once, and thus jeopardising the lives of sailors relying on the Nautical Almanac. After this episode Maskelyne ensured that computers and anti-computers were based in different parts of the country and did not know each other’s identity, so collusion would be impossible. So large-scale distributed networks of computers existed as long ago as the eighteenth century!

Maskelyne’s is a method used today for safety-critical computer systems: a “fly-by-wire” passenger aircraft may have five different computers, programmed by different teams, carrying out the flight calculations. In the event that there is a programming error by one team, the majority vote will over-rule the erroneous calculation so the plane is in difficulty only if three of the five teams have independently made the same mistake. It’s nice to realise that the systems which protect us from computer error in today’s safety-critical systems were devised 250 years ago to solve similar problems albeit with a completely different technology!

We know human beings are unreliable calculators, although we can generally get 1+1 and 2+2 right, despite the exceptions in my illustration. I’m going to show you that computers sometimes err too. Let’s open up Microsoft Excel (which I should make clear is generally a trustworthy, reliable piece of software). I’m going to ask Excel to add 2+2.

What we find is that Excel says 2+2=5.
Clearly there is something not quite right. In fact if we change the output format we find that I am adding 2.3 to 2.3, with the result 4.6, and rounding to the nearest integer. Excel rounds 2.3 down to 2, but rounds 4.6 up to 5. But silly though you might think this example is, it illustrates a very real problem with computer arithmetic.
Computers have a finite amount of storage available for data, and so they can represent numbers with only finitely many digits. If we are dealing with whole numbers, that means that there is an upper limit to the size of the numbers that can be represented.

Let’s suppose that a hypothetical computer allocates four binary digits (or bits) to each integer. The digits represent from the right ones, twos, fours and eights, so 0110 represents 0x8 + 1x4 + 1x2 + 0x1 = 6. Then our computer is working with 16 different numbers, from 0000 (which is zero), 0001 (one), 0010 (two), up to 1111 which is 8+4+2 +1 = 15.

What happens when we add 1 to 1111?

1111

 + 0001

 10000

We expect to get 10000, representing 16. But only four bits are available so the leading 1 drops off. The result is zero.
In fact this is actually rather convenient, because it gives us a good way to represent negative numbers. Since 1 + 1111 gives us zero, it makes sense to regard 1111 as representing -1 rather than 15, and similarly 1001 should be seen as representing -7 rather than 9, since if we add to it 7, which is 0111, we get zero. In general this means that the first digit of our binary number can be regarded as a “sign bit” – it is 0 for a positive and 1 for a negative number – so there is an easy hardware test for whether a number is positive or negative. Our imaginary computer represents integers as follows:

	Binary
	Decimal Equivalent
	Binary
	Decimal Equivalent

	0000
	0
	
	

	0001
	1
	1111
	-1

	0010
	2
	1110
	-2

	0011
	3
	1101
	-3

	0100
	4
	1100
	-4

	0101
	5
	1011
	-5

	0110
	6
	1010
	-6

	0111
	7
	1001
	-7

Of course real computers use more digits for each integer and thus can represent much larger numbers. For example, the first computer I programmed used 16-bit words to represent integers, which meant that, since 215 is 32768, it could represent integers between -32767 and +32767. Today’s computers generally use more bits and can work with larger integers.

This works well for arithmetic (up to a point). Multiplication works:

 0101 (= 5)

 x1111 (= -1)

 0101

 0101

 0101

 0101___

 1001011

which (when the first three digits drop off) gives us 1011 which is -5. As an exercise you might like to check that -1 times -1 (1111 times 1111) gives us the correct answer of +1.

But what happens if I add 6 (= 0110) and 5 (= 0101)? Well, I get 1011, which in basic binary represents the correct answer of 11, but which my computer regards as ‑5. So my computer thinks that 6+5 = -5! The addition has “overflowed” into the sign bit and we have the wrong answer. (This is because 11 is too large a number for our computer to handle.) Overflow is a real problem for fixed-wordlength integer arithmetic on a computer.

The dangers of overflow are shown by a rather dramatic example from an early computer chess tournament. Chess-playing machines estimate how good they think their position is by calculating a number – the evaluation function, which is positive if the machine thinks it is winning (the higher the better) and negative if it thinks it is losing. In this case one competitor, early in a game, thought it had a very strong position. Indeed, so strong did it think its position was that its evaluation function overflowed – becoming negative. So, seeking what it thought was the best move in order to make the evaluation function positive again, the computer now searched for the worst move it could possibly make. It went on to lose the game.

Computers generally check for overflow when doing calculations, but that incurs overheads (basically the machine is doing extra checks every time it does a calculation to make sure that no overflow has occurred, which slows down its arithmetic).
So overflow is a problem with computer arithmetic but it doesn’t explain why Excel is telling us that 2+2=5. For that we have to see how computers represent general numbers, not just whole numbers.
A simple fraction like ½ can be represented by regarding our four-bit integer, which takes values between -7 and +7, as the numerator of a fraction with 8 as the denominator. This way our 8-bit word can represent positive or negative fractions between 1/8 and 7/8:

	Binary
	Decimal Equivalent
	Binary
	Decimal Equivalent

	0000
	0
	
	

	0001
	1/8
	1111
	-1/8

	0010
	2/8 = 1/4
	1110
	-2/8 = -1/4

	0011
	3/8
	1101
	-3/8

	0100
	4/8 = 1/2
	1100
	-4/8 = -1/2

	0101
	5/8
	1011
	-5/8

	0110
	6/8 = 3/4
	1010
	-6/8 = -3/4

	0111
	7/8
	1001
	-7/8

This arithmetic is consistent (and multiplication works out as you would hope, too.) We can now implement “floating point” arithmetic on our computer.
We often write a decimal number like 12.345 as 0.12345 x 102. In the same way our computer stores two parts for the number – the mantissa, which is a (binary) fraction between -1 and +1, and the exponent, which is a binary integer, positive or negative, which is the power of two by which we have to multiply the fraction to get the number we want. For example, the number ½ would be represented by mantissa 0100 and exponent 0; ¼ would be 0100 with exponent -1, and 5 would be 0101 with exponent 3 (since 0101 represents 5/8 we have to multiply it by eight, which is 23, to get 5).

The problem is that we have only finitely many bits available to represent the mantissa and the exponent. This is particularly an issue for the mantissa. (Although computers work in binary, I shall demonstrate the principles using decimal notation.)

The decimal expansion of even a simple fraction like 1/3 is infinite – 0.3333333333… with the digits going on for ever. If we are only able to store up to six decimal places, the best we can do is 0.333333, which is probably close enough for practical purposes. But if we add this number to itself three times, we get 0.999999, which is less than one. If we were to ask someone doing arithmetic in this way whether 3 times one-third were equal to one, then the answer would clearly be “no”. The error in representing a number in a computer is called “rounding error” or “truncation error” (depending on whether the computer hardware rounds the final digit of a number to the closest approximation – turning 1.9 into 2 – or simply loses digits it cannot represent – in which case 1.9 drops down to 1.)

Rounding or truncation error is a problem. Typically we store the mantissae of our numbers with enough bits to represent them with sufficient accuracy for practical purposes. But when we add two numbers we potentially double the rounding error. When our mathematical software for an application like weather forecasting performs millions of calculations to calculate the approximate solution to a system of partial differential equations, the rounding error can quickly accumulate, even though the individual error in each calculation is tiny.

The discipline of mathematics known as numerical analysis is, in large part, the study of how to organise machine computation to minimise the effects of rounding error. Numerical analysts look for ways to reduce the number of calculations to avoid as far as possible the accumulation of small errors, and to arrange the calculations in such a way that rounding error is minimised as much as possible and that the effects of these errors are mitigated. Nevil Maskelyne was doing very much the same thing in the eighteenth century when he was specifying calculating procedures for his “computers”.

A (probably apocryphal) example of the effect of rounding error is the story of the programmer who was writing software to add interest to bank accounts. The interest calculation rarely resulted in an exact number of pence: the programmer added an instruction that the fractional part of the interest due was added to his own account. Nobody lost more than a fraction of a penny, and the bank’s balance sheet added up, but since he was gaining tiny amounts of money from a large number of accounts the programmer became very rich.

So computer arithmetic can go wrong. Nevertheless, especially when the effects of rounding error and the other consequences of computer arithmetic are understood and mitigated, computers are better at computation than we humans are. This was the motivation behind Charles Babbage’s attempts to build calculating engines, starting with the Difference Engine which he proposed in 1822, and later with his Analytical Engine which in many ways anticipated the digital computers we use today.

I’d like to comment today particularly on Babbage’s farsightedness regarding the interaction between human and machine. People make mistakes in calculation, but they make other mistakes too. We misread things. When Babbage published books of mathematical tables he was very much aware of this. He experimented with different colours of paper, believing people make fewer mistake reading numbers from coloured paper than from white. (I still rather regret not buying, when it was offered a few years ago, a rare copy of an edition of Babbage’s tables which was printed on yellow paper: I was deterred by the high cost because in this particular copy the yellowness of the pages had not faded as most copies had.) To avoid human transcription errors, Babbage designed his engines to include printing as an integral part of the machine. There was no need to transcribe the numerical output, so that the tables produced by his engines would exclude human error not only in the computation but also in the production.

What else can go wrong with computer mathematics? Suppose I am using a computer to study a sensitive piece of industrial equipment, like a nuclear reactor or a chemical plant, or to fly an aircraft, control railway signalling, or administer drugs to a critically ill patient. These software systems will all be based on the computer implementing an underlying mathematical model of the process. In any of these examples a computer error could have life-threatening consequences.

My model is built out of mathematical equations. These equations can be solved by a mathematical algorithm – a (possibly very sophisticated) procedure which manipulates the data to obtain a solution. I programme the computer in a high-level programming language like C++ or Java to implement the algorithm. A piece of systems software called a compiler converts my high-level programme into low-level binary code which the computer can execute directly. The computer runs this code and thereby generates data representing the solution of the equations. I then draw conclusions from the computer output, or the computer makes decisions on the basis of these solutions.

What can go wrong? At each one of these stages there are opportunities for error.

First of all, my model may not accurately represent the real-life situation. Here’s a piece of mathematical modelling, by Mark Twain:

In the space of one hundred and seventy-six years the Lower Mississippi has shortened itself two hundred and forty-two miles. This is an average of a trifle over one mile and a third per year. Therefore, any calm person, who is not blind or idiotic, can see that in the Old Oolitic Silurian Period, just a million years ago next November, the Lower Mississippi River was upward of one million three hundred thousand miles long, and stuck out over the Gulf of Mexico like a fishing-rod. And by the same token any person can see that seven hundred and forty-two years from now the Lower Mississippi will be only a mile and three-quarters long, and Cairo and New Orleans will have joined their streets together, and be plodding comfortably along under a single mayor and a mutual board of aldermen. There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.

Twain’s mathematics is correct, but his model of a linear change in the length of the river does not accurately represent the real situation in the long term, and however correct his analysis based on this model, the conclusion is invalid.

Secondly, the computer may not solve the equations correctly. In my opinion it is not sufficiently appreciated that mathematical algorithms, even when correctly implemented, don’t always give the right answers, and I’d like to explore this for a moment.
Sometimes we can check. Suppose we are trying to solve the equation f(x) = 0. We might use the Newton-Raphson method, a very fast algorithm which solves equations of this form. If the computer tells us that y is a solution of the equation, we can simply evaluate f(y): if it is non-zero (or, allowing for rounding error, not very close to zero) we know there is a problem.

Suppose for example we are trying to solve the equation f(x) = x2 – 4 = 0. If the computer tells me that a solution is x=2.001, I can do the calculation and find that f(2.001) is 0.004001, which may or may not be sufficiently small to convince me that the solution is correct. (We are not saying it is the only solution! That’s another issue.) If the computer tells me the solution is x=1000, I can try it and I find that f(1000)= 999,996 is clearly not zero: so I know that something has gone wrong.
But sometimes we can’t check. Many mathematical models are build from differential equations – equations of the form dx/dt = f(x,t). Essentially (although usually in many dimensions) we are given a curve and we have to evaluate the area under the curve. As human beings (or if we have a sufficiently sophisticated computer) we might be able to find the exact mathematical formula for the solution, but for many modelling situations the equations are so complex, and have so many discontinuities, that we cannot find such a formula. (If we did have such a formula, we wouldn’t need the computer to solve the equations!) So how do we know that the computer’s answer is correct?

Solving a differential equation is difficult because the equation specifies a rate of change that is generally itself changing all the time. If the rate of change were constant then we could simply multiply it by the time to get the change in the dependent variable over that time. If I travel at a constant 30mph, after ten minutes I have gone 5 miles. But if my speed is constantly changing, it is much harder to estimate the distance travelled.

For example, let’s use Euler’s method – a simple but sound method for solving differential equations – to solve the equation dx/dt = -kx. Equations of this form arise very often in many kinds of mathematical modelling. The solution to this, we know from straightforward maths, is x = Ae-kt where A is the starting value of x when t=0. We can plot this, and we see that the value decays to zero over time. The larger k, the more quickly the value approaches zero.

Euler’s method for approximating the solution is to take a series of small steps of size h (the steplength), and assume that the rate of change does not change over that time:

given dx/dt = f(x,t): x(t0+h) = x(t0) + hf(t0,x0)

Let’s try this: let’s take the equation dx/dt = -x, with x(0) = 1 – the solution is x = e-t. If we use Euler’s method with h=0.1, we see in the graph below that we get a good approximation: the true solution is the solid line and the computed approximation the dashed line.

[image: image2.png]1.2

0.8

0.6

0.4

0.2

Solving dx/dt = -x
012 0‘4 016 0‘8 ‘

Let’s now try another one. The equation dx/dt = -1000x has the same form as the previous example. The solution is x = e-1000t. We see from the plot below that the true value of x gets very close to 0 almost immediately: indeed for all practical purposes this solution is 0 throughout.
[image: image3.png]x = exp(-1000t)

r
0.2

0.2

0.4 0.6

0.8

1
1.2

Let’s now solve it using exactly the method we used before, with step-length 0.1. This is what we get:

	t
	Approximation for x

	0
	1

	0.1
	-99

	0.2
	9801

	0.3
	-970299

	0.4
	96059601

	0.5
	-9.5E+09

	0.6
	9.41E+11

	0.7
	-9.3E+13

	0.8
	9.23E+15

	0.9
	-9.1E+17

	1
	9.04E+19

We have an approximation which is oscillating and getting very very big! Remember this is meant to be approximating a function which is effectively zero! This is not the right answer.

In this case we could in fact get a good approximation by taking a very much smaller steplength (which in a larger model would increase the cumulative rounding error in our solutions to other parts of the system). This particular problem, called stiffness, is a real problem in mathematical modelling: we put a huge computational effort into calculating something which is for all practical purposes zero. This example shows the difficulty we have when we cannot check that our computed answer is correct. There is no obvious indication, apart from the ridiculous computed solution, that anything is wrong.

These problems are not just theoretical. Here is a cautionary tale I was told when I began my career in mathematical modelling. A new power plant was being built (not in the UK) and a detailed mathematical model was commissioned. The model predicted that in some operating conditions the boiler pressure would not be constant but would oscillate. The engineers had never seen real plant behave like this: they suggested the oscillations were an artefact of the mathematical solution of the differential equations (a bit like my last example) and were not real. The mathematicians were not convinced: the period of the oscillations didn’t seem to fit with their being a spurious construct of the numerical algorithm.
There was a way to resolve the matter: other simpler models of the power plant could be examined to see if they predicted the problem. They all showed no boiler pressure oscillations. So the oscillations were deemed spurious and the plant was built to the original design.

But when the plant began operating it turned out that the oscillations were real. The new mathematical model, which had correctly predicted them, was used to find a fix and the problem was resolved. But the question remained: why had none of the other models predicted the oscillations?

So the software was examined in detail. And it turned out that every one of these models included a subroutine called something like “Smooth” or “Filter”, whose job was to detect and remove these oscillations when they arose in the computed solutions. Every previous modeller had noticed the oscillations, and every one had assumed they were a numerical error rather than being real!

I would argue that no-one did anything terribly wrong. Numerical methods do sometimes introduce erroneous “solutions” which are not present in the real system. The modellers were, in principle, right to follow the judgment of experienced engineers in concluding that these should be filtered out. Although the outcome was the incorrect rejection of what turned out to be real physical behaviour, all those involved had made correct professional judgments. Using computers for complex mathematical modelling is far from straightforward.

We have seen in our discussion of stiff equations that a correct algorithm, correctly implemented, solving the correct equations, may still yield an incorrect solution. But there are other potential problems. I have to specify my model and programme my algorithm in a high-level language like C++, and I may make errors in doing so. Even if I get my programme right, the people who programmed the compiler that translates my programme into machine code the computer can execute may have made errors, so my correct programme may be turned into incorrect code. Since compilers are generally very widely used, any such bugs are likely to become apparent and be corrected quickly, but they do occasionally occur.

Finally, the hardware may not execute the programme correctly. It is said that the term “bug” for a computer error arose when the pioneering programmer Grace Hopper found that her programme was malfunctioning because of a dead insect in the computer circuitry. It can also happen that the design of the computer chip itself is faulty. In 1994 it was found that the Intel Pentium processor had a design flaw which meant that the results of some divisions were wrongly calculated.

Hardware bugs, as in the Intel case, and bugs in compilers and software like Microsoft Excel, which once contained a multiplication bug, are rare and generally have little noticeable effect on the accuracy of practical calculations. However the consequences could be serious. Adi Shamir is the “S” in the name of the RSA algorithm, named after Rivest, Shamir and Adleman. That is the primary encryption algorithm used to guarantee the security of data we send over the internet: it’s what protects our credit card numbers from interception when we shop online. The RSA algorithm is mathematically secure: I simplify, but essentially we know that in principle it cannot be broken. However, if you are using RSA on a computer with an arithmetic bug in its hardware, Shamir has shown that your secret key on which the security of your encryption depends can easily be found by an attacker who knows of the bug: your security has been compromised. So apparently trivial hardware or software errors could have very serious consequences.

There is one other issue for my mathematical modeller. It’s that aspect of chaos theory known as Sensitive Dependency on Initial Conditions. This came to prominence about fifty years ago when Edward Lorenz was working on modelling weather systems. He had a fairly simple model with twelve variables, and on one occasion he wished to replay a simulation from part-way through. He typed in the values of all the variables as recorded to high accuracy in the middle of the previous run, but the replay went entirely differently. The values printed were rounded from those held by the computer, and a tiny difference in the values of the variables led to big differences in how the simulation unfolded. (This is the famous “Butterfly Effect”.

Many non-linear mathematical equations behave in this way. Since we can rarely measure physical constants to more than a few significant figures of accuracy, if our system is chaotic we cannot know which behaviour is “correct”: such systems are inherently unpredictable. The weather is chaotic in this sense: we cannot predict more than a few days ahead because tiny unmeasurable changes in the data lead to different longterm outcomes. Another example of a chaotic system is the double pendulum. I can try to release it from exactly the same position twice, but the second behaviour rapidly diverges from the first. Although the equations of its motion are well understood, we cannot predict its precise motion because it is so sentitive to tiny differences in the starting position.

So we’ve seen that there are very good reasons why computers go wrong when they do mathematical calculations. What else do computers do? I want to look now at one of the classic texts on computing, the 1950 paper by Alan Turing on machine intelligence in which he proposed what we now call the Turing Test. Turing argued that a sensible test of a computer’s ability to display intelligent behaviour is to ask whether it is capable of holding a conversation with us so that we could not tell whether we were chatting to a human being or a computer.

Here is a hypothetical conversation from Turing’s paper.

Q: Please write me a sonnet on the subject of the Forth Bridge.

A : Count me out on this one. I never could write poetry.

Q: Add 34957 to 70764.

A: (Pause about 30 seconds and then give as answer) 105621.

Q: Do you play chess?

A: Yes.

Q: I have K at my K1, and no other pieces. You have only K at K6 and R at R1. It is your move. What do you play?
A: (After a pause of 15 seconds) R-R8 mate.

This is a remarkable (hypothetical) conversation, to which we will return. Remember Turing is writing long before today’s computers existed, at a time when computers were used almost exclusively for calculation, when input and output were through switches, lights and teletype.

When I was at school my friends and I were fascinated by the idea of a computer playing chess (long before access to chess-playing computers was commonplace). Chess seemed to us to be one of the greatest tests of the human intellect. Would a computer ever be able to beat a competent human chess player? In 1968 David Levy (a strong but not outstanding player) had made a bet, eventually worth £1250, that no computer would beat him within ten years: he won the wager.

Chess is a difficult game for computer programmers: the number of possible moves is so great that calculating all possible moves far ahead requires an enormous amount of computer time. (That isn’t the way top humans find their moves!) Computers could be programmed to play other games. It was in backgammon that a computer first beat a human world champion: Hans Berliner’s programme BKG9.8 won a short match against Luigi Villa in 1979. While the computer played well, experts felt that Villa played better, but the match was short enough for luck to be a significant factor. The decisive game hinged on a straight race in which Villa had a large advantage. But the computer rolled 31 pips more than Villa over the next twelve turns – remarkably effective dice-rolling! - to reach a position where it had a paltry 20% chance of winning: it then threw a double-six to secure the win. Like humans, computers can be lucky on occasion!

Chess seems to be a game of pure skill which leaves no room for such luck, and it was not until 1997 that a computer beat the World Champion in a chess match, when the IBM supercomputer Deep Blue beat Garry Kasparov 3½ - 2½. Deep Blue had enormous computing power, with 30 120MHz microprocessors working in parallel: it could evaluate 200 million positions in a second. So was it just Deep Blue’s sheer computational power which beat Kasparov?

A recent book by Nate Silver has given a rather interesting account of the match. In the first game Kasparov gained a winning advantage. Deep Blue had an opportunity on its 44th move to prolong the game but played a rather poor move which eased Kasparov’s exploitation of his advantage. This puzzled Kasparov. How had such a powerful computer made such a mistake? Kasparov deduced that the computer must have been capable of looking so far ahead that it could see that the apparently stronger move would still lead to defeat, and therefore had not selected it. So Kasparov concluded that Deep Blue was searching potential positions much further ahead than he had previously expected.

In the next game, it was Deep Blue who gained an advantage. On the 44th move Kasparov checked and Deep Blue had a choice of two king moves. He played the one which left his king more exposed. This offered Kasparov an opportunity to play to force a draw by perpetual check (and post-match analysis showed that he could indeed have gained a draw in that way). To the spectators’ surprise Kasparov didn’t play that line: instead he resigned! Why? Because he thought he knew from the previous game that Deep Blue could calculate far enough ahead to know whether there was or was not a perpetual check. Since Deep Blue had permitted the line, Kasparov deduced that he couldn’t force a draw, so he resigned. In fact he had had a drawn position.

The next three games were drawn, with Karparov thoroughly demoralised. In the sixth and last game Kasparov made an early blunder and Deep Blue won the game and match. At last a computer had beaten the world’s top human chess player!

So was this the ultimate triumph of machine intelligence?

Well, if Silver is right, the critical moment was Deep Blue’s 44th move in the first game of the match. Had the computer, as Kasparov thought, looked so far ahead that it could see no difference between the outcome of the apparently better move and the one it chose? Well, no. There was a bug in Deep Blue’s programme. It had played a poor move in error (in an already losing position). But assuming this move was intentional led Kasparov to over-rate his machine opponent’s ability to see ahead: as a result he threw away the second game, and was so demoralised that he under-performed in the remaining games and lost the match. In this reading Deep Blue won, not through outstanding artificial intelligence, but because of a programming error and Kasparov’s resulting mis-analysis of his opponent’s capability. And we said that there is no luck in chess!

I’d now like to return to Turing’s hypothetical human-computer conversation from 1950. Remember that this did include a chess problem. In fact Turing’s text presents a fascinating view of what computers can do. They do arithmetic – that is perhaps the obvious thing that they are good at – and unlike humans they usually get the right answer, unlike the respondent in Turing’s conversation. (If Turing’s lines are being spoken by a computer, it is also being clever enough to display a human-like ability to dissimulate.) Computers can play chess. Turing’s conversationalist doesn’t write poetry (and as far as I know we don’t yet have any computer candidates for Nobel laureateship).

As a teenager I thought that playing chess was an ultimate test of intelligence, artificial or human. I now know better. Computers were playing good chess long before they were able to carry out what I once regarded as much more primitive human operations, like understanding spoken language and recognising faces. It turns out that these abilities, which are so routine for us humans that we don’t regard them as signifiers of great intelligence, are much harder for machines than playing chess or predicting the weather. (As somebody who is reasonably good at chess but embarrassingly bad at recognising faces, this should not really have been a surprise to me.)

In 1999 I was discussing human-computer interaction with students and I quoted a new book on the difficulties of language processing by computer. I recall that I said that I did not think that a computer would be able usefully to recognise human speech within my lifetime. The same evening I met a friend whose elderly father had suffered a stroke a few months before and was no longer able to type. She said, “He was very depressed when he thought that he could never write another book, but three months ago he got speech recognition software which works so well that he has just sent a new manuscript to his publisher.” I like to think that I have rarely had my predictions confounded quite so quickly. Recently a computer-generated caption on a news programme told us that “Michael Gove wanted to back a lorry out”. That a computer can now make such a sophisticated error would have been quite unthinkable only a few years ago!

We are now in a world in which computers process speech routinely (if not always accurately) and recognise faces in photographs with considerable accuracy. The algorithms they use are often very different from the mathematical algorithms used in numerical computation. They are fuzzy, they learn from experience, they get better given more data. This means that when they go wrong, there is no single cause of error. If a system identifies a photograph of me as Leonardo DiCaprio, it isn’t easy to work out why.

These new computer abilities are going to be increasingly important. There has been talk of security cameras which will recognise known troublemakers. If a computer mistakes you for a hooligan you may not be allowed into a football ground; if it matches your appearance to that of a suspected terrorist you won’t be allowed through airport security; if it doesn’t recognise the signature on your cheque it won’t accept it. These decisions are based on complex algorithms which match patterns and resist line-by-line analysis, so that when these mistakes occur, we won’t be able to identify “errors” in the software, and the consequences of computers having the power to make such judgments could be serious for the unlucky few. It is relatively easy to correct an erroneous bank transfer but if computers automatically mis-identify one’s face as that of a terrorist it may be much harder to restore normality to one’s everyday life. The changing nature of computer errors will have interesting implications for us all over the next few years.

The history of errors is an important part of the history of computing. So far computer errors have usually been programming errors. We have learned that we humans are not good programmers. We are good at giving instructions to other people, whose understanding of the context means that ambiguities are resolved and many errors are corrected subconsciously. The invention of programmable computers has made explicit that while we are very good in giving instructions to someone like us who will use the context to understand our intentions, specifying instructions in precise low-level detail is a very un-human activity.

As computers have developed we have learnt more about what it means to be human. As a result we are much more aware of the complexity of everyday procedures like understanding speech and recognising faces. In these and other new applications, new kinds of computer error will arise.
Now that computers are beginning to match us in activities which are more fundamentally human than calculation and binary logic, I am sure that we are going to continue to gain new insights into ourselves, not least from the mistakes these computers will undoubtedly continue to make.

Thank you for listening. I am happy to take questions now, or if you would like to comment on this lecture afterwards, please do so on my blog www.tonysmaths.blogspot.com.

© Tony Mann 2013
1 | Page

